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EXECUTIVE SUMMARY

INVESTIGATION OF USE OF SLAG
AGGREGATES AND SLAG CEMENTS IN
CONCRETE PAVEMENTS TO REDUCE
THE MAINTENANCE COST

Introduction

This project originated in response to the reported field cases of
deterioration of pavement concrete containing air-cooled, blast
furnace slag (ACBFS) aggregates. Although the root causes of
the observed deterioration were not always entirely clear, some of
the concerns appeared to be related to the physical characteristics
and chemical composition of the slag aggregates themselves. These
included such issues as the perceived variability of specific gravity
and porosity of aggregate particles, as well as the fact that such
aggregates can contain the soluble calcium sulfide (CaS). The pre-
sence of this compound has been linked to the formation of secon-
dary ettringite, which can deposit in the existing air-void system, thus
making it less effective in offering freeze-thaw resistance to concrete.

The main purpose of this research was to evaluate the influence
of using air-cooled blast furnace slag (ACBFS) coarse aggregate as
a replacement for natural dolomite coarse aggregate on the mecha-
nical properties and durability of pavement concrete mixtures. All
mixtures containing ACBFS were designed to meet the require-
ments of Indiana Department of Transportation (INDOT) speci-
fications for pavement concrete. The scope of the study included
evaluation and analysis of the effects of ACBFS on concrete
properties in the presence of three different types of deicers (CaCl,,
MgCl,, and NaCl). These evaluations were conducted under
simulated temperature cycles that represented exposure to freezing-
thawing (FT) and wetting-drying (WD) conditions.

Eight different concrete mixtures were produced in the course of
this study. These mixtures were prepared using two types of coarse
aggregates, ACBFS and (for comparison with the typical INDOT
mixtures) dolomite. Four different binder systems were used,
including: (a) plain — 100% portland cement (PC); two types of
binary binder systems, (b) 20% fly ash (FA) + 80% PC and (c)
25% slag cement (SC) + 75% PC; and a single ternary system,
(d) 17% FA + 23% SC + 60% PC.

Each mixture was used to prepare several types of specimens for
laboratory testing. The test performed on fresh concrete included
determination of slump, unit weight, and entrained air content.
The mechanical properties of the hardened concrete were assessed
by conducting compressive strength and flexural strength tests.
The durability of concrete was assessed by periodically measuring
relative dynamic modulus of elasticity (RDME) and by monitor-
ing the length changes of the prismatic specimens. The changes in
the physical appearance of specimens exposed to either FT or WD
conditions were documented at different stages of the exposure
cycles. The depth of chloride ion penetration was measured after
completion of the exposure period. The combined effects of the
deicer/exposure conditions on the microstructure of the concrete
were evaluated using scanning electron microscopy (SEM)
analysis on the specimens after completion of the exposure test.

Findings

This study demonstrated that air-cooled blast furnace slag
(ACBFS) can safely replace the natural coarse aggregate in a
typical pavement concrete. Potential benefits of using ACBFS
aggregate in pavement concrete include improved quality of the

paste due to the possibility of internal curing and reduced risk of
alkali-silica reaction (ASR) due to the absence of an active form of
silica in the aggregate particles. The specific gravity of ACBFS is
also lower than that of a typical natural aggregate, thus resulting
in a larger volume of concrete for the same weight (an economical
benefit). However, it should also be realized that ACBFS has
lower resistance to the abrasion compared to dolomite and it
contains calcium sulfide, which can dissolve and release sulfide
into the pore solution. That sulfide can subsequently oxidize and
convert to sulfate, thus increasing the potential for sulfate-related
problems. Moreover, in some cases, the leaching of calcium sulfide
(CaS) from ACBEFS particles was found to create intraparticle
porosity, which may weaken the aggregate. With that said, none
of these were found to have any measurable negative impact on
the durability of concrete under the conditions used in this study.
This is mostly because, as discussed below, the durability of
concrete was primarily controlled by the type of the binder system
and the type of the deicer used.

Under the exposure conditions used in this study (i.e., FT and
WD cycles in the presence of the deicers), the durability of
pavement concrete was highly improved in cases where part of the
portland cement was replaced by either fly ash, slag cement, or a
combination of these materials. The observed improvement is
attributed to a reduction in the amount of calcium hydroxide
present in the hydrated matrix (due to pozzolanic reaction) and to
densification of the matrix by formation of additional C-S-H (also
due to pozzolanic reaction). Both of these processes reduced the
vulnerability of the matrix to chemical attack by chloride-based
deicers. In addition, the use of slag cement reduces the total alkali
content of the pore solution (especially at later ages), which is
beneficial with respect to minimizing the potential for dissolution
of calcium sulfide from ACBFS aggregate.

In terms of their role in concrete deterioration, calcium chloride
was found to be the most aggressive deicer, followed by mag-
nesium chloride and sodium chloride, respectively.

The mechanisms of deterioration of concrete exposed to CaCl,
and NaCl deicers were found to be similar. Specifically, in both
cases, the deicers reacted with calcium hydroxide, producing
expansive compounds that resulted in deterioration of concrete
matrix. This, in turn, allowed for more extensive penetration of
water and deicers into the concrete matrix. However, the
deterioration rate of CaCl, was found to be much faster than that
of NaCl. The faster deterioration rate observed in the presence of
CaCl, can be attributed to the formation of calcium oxychloride.

Two most common concrete deterioration mechanisms trig-
gered by the exposure of MgCl, involved its reaction with calcium
hydroxide and calcium-silicate-hydrate (C-S-H) to produce CaCl,
and magnesium-silicate-hydrate (M-S-H), respectively. Unlike C-S-H,
M-S-H does not have binding capacity and thus reduces the
strength of the concrete.

Statistical analysis has proven to be an effective tool in assessing
the significance of several different variables (i.e., type of binder
system, type of aggregate, type of deicer, and type of exposure con-
ditions) in affecting concrete properties. Moreover, Tukey’s multi-
ple comparison method was found to be suitable for differentiating
the impact of different levels within a specific factor.

The benefit cost analysis has proven that air-cooled blast furnace
slag (ABCEFS) is an economically feasible alternative to natural
stone to be used as a coarse aggregate in pavement concrete.

Implementation

The results from this study revealed that ACBFS is a viable
alternative for natural coarse aggregate to be used in pavement
concrete. The usage of fly ash, slag cement, and the combination



of both as partial replacement of portland cement was found to
not only improve concrete’s strength at later ages, but also to
increase concrete durability in the presence of deicers and under
the FT/WD exposure conditions used in this study. Among the
three types studied, the calcium chloride (CaCl,) deicer was found
to be the most aggressive in terms of inducing damage to the

concrete. The next (in terms of its deteriorative effects) was the
magnesium chloride (MgCl,) deicer, followed by sodium chloride
(NaCl). Thus, it is advised that the use of these deicers on plain
concrete pavements should be more strictly monitored and
restricted to cases where other deicers cannot provide the required
safety of roadways.
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concrete specimens exposed to NaCl after (from left to right) 42, 65, 139 and 350 FT cycles

Figure C.37 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to distilled water (WD) after (from left to right) 42, 65, 139 and 350 FT cycles

Figure C.38 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to CaCl, after (from left to right) 3, 87 and 172 FT cycles

Figure C.39 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to MgCl, after (from left to right) 3, 87 and 172 FT cycles

Figure C.40 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to NaCl after (from left to right) 3, 87 and 172 FT cycles

Figure C.41 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 3 and 172 FT cycles

Figure C.42 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to CaCl, after (from left to right) 3, 87 and 172 FT cycles

Figure C.43 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to MgCl, after (from left to right) 3, 87 and 172 FT cycles

Figure C.44 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to NaCl after (from left to right) 3, 87 and 172 FT cycles

Figure C.45 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 3, 87and 172 FT cycles

Figure C.46 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete specimens

exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.47 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete specimens

exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.48 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete specimens

exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles

Figure C.49 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete specimens

exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles

Figure C.50 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles
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Figure C.51 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete specimens
exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.52 Physical changes in the appearance of the representative sample of M2-2FA.8PC-ACBFS (fly ash-ACBFS) concrete specimens
exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles

Figure C.53 Physical changes in the appearance of the representative sample of M2-2FA.8PC-ACBFS (fly ash-ACBFS) concrete specimens
exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles

Figure C.54 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.55 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS) concrete
specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.56 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS) concrete
specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles

Figure C.57 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBEFS (slag cement-ACBFS) concrete
specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles

Figure C.58 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.59 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) concrete
specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.60 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) concrete
specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles

Figure C.61 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) concrete
specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles

Figure C.62 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens exposed to
CacCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.63 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens exposed to
MgCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.64 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens exposed to
NaCl after (from left to right) 176, 205 and 281 WD cycles

Figure C.65 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens exposed to
distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles

Figure C.66 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete specimens
exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.67 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete specimens
exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles

Figure C.68 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete specimens
exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles

Figure C.69 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete specimens
exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles

Figure C.70 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite) concrete
specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.71 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite) concrete
specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.72 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite) concrete
specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles

Figure C.73 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite) concrete
specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles

Figure C.74 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite) concrete
specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles
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Figure C.75 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles

Figure C.76 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles

Figure C.77 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles

Figure D.1 SEM-EDX micrographs for M1 (plain-ACBFS) beam exposed to MgCl, after 347 FT cycles; (A) Mg-O-Cl,
(B) M-S-H, (C) and (D) ettringite (SEM-BSE)

Figure D.2 SEM-EDX micrographs for M1 (plain-dolomite) beam exposed to MgCl, after 347 FT cycles; (A) NaCl deposit,
(B) Ettingite, (C) Ettringite and Friedel’s salt (D) Chloride in paste (SEM-BSE)

Figure D.3 SEM-EDX micrographs for M1 (plain-NaCl) specimen exposed to distilled water (DST) after 347 FT cycles;
(A) and (B) ettringite, (C) Portlandite/Ca(OH),, (D) C-S-H (SEM-BSE)

Figure D.4 SEM-EDX micrographs for M2 (fly ash-ACBFS) specimen exposed to CaCl, after 347 FT cycles; (A) CaCl,,
(B) Friedel’s salt and ettringite, (C) Ettringite (D) CI intrusion in the paste (SEM-BSE)

Figure D.5 SEM-EDX micrographs for M2 (fly ash-ACBFS) specimen exposed to MgCl, after 347 FT cycles;
(A) CI- and sulfate in the matrix, (B) Brucite layer, (C) Ettringite and Friedel’s salt in void, (D) Mg-O-Cl (SEM-BSE)

Figure D.6 SEM-EDX micrographs for M2 (fly ash-ACBFS) specimen exposed to NaCl after 347 FT cycles;
(A) CI- ingress in the matrix, (B) Friedel’s salt, (C) Ettringite and (D) NaCl deposit (SEM-BSE)

Figure D.7 SEM-EDX micrographs for M3 (slag cement-ACBFS) specimen exposed to CaCl, after 310 FT
cycles have shown deposits of Friedel’s salt, ettingrite and CaCl, deicer in the matrix (SEM-BSE)

Figure D.8 SEM-EDX micrographs for M4 (ternary-ACBFS) specimen exposed to MgCl, after 310 FT cycles (SEM-BSE)

Figure D.9 SEM-EDX micrographs for M4 (ternary-ACBFS) specimen exposed to NaCl after 310 FT cycles;
(A) and (B) Friedel’s salt, (C) ettingrite deposit in pore (D) Cl deposits within the matrix (SEM-BSE)

Figure D.10 SEM-EDX micrographs for M4 (ternary-ACBFS) specimen exposed to distilled water (DST)
after 310 FT cycles (SEM-BSE)

Figure D.11 SEM-EDX micrographs for M5 (plain-dolomite) specimen exposed to CaCl, after 151 FT cycles;
(A) and (B) Deposits of Cl within the matrix, (C) & (D) Friedel’s salt (SEM-BSE)

Figure D.12 SEM-EDX micrographs for M5 (plain-dolomite) specimen exposed to MgCl, after 350 FT cycles;
(A) and (B) Chloride infused M-S-H, (C) & (D) Friedel’s salt (SEM-BSE)

Figure D.13 SEM-EDX micrographs for M5 (plain-dolomite) specimen exposed to NaCl after 350 FT cycles;
(A) and (B) Chloride deposits within C-S-H, (C) & (D) Friedel’s salt (SEM-BSE)

Figure D.14 SEM-EDX micrographs for M6 (fly ash-dolomite) specimen exposed to MgCl, after 350 FT cycles;
(A) and (B) Chloride infused M-S-H, (C) Cl deposits within C-S-H and (D) Friedel’s salt (SEM-BSE)

Figure D.15 SEM-EDX micrographs for M7 (slag cement-dolomite) specimen exposed to CaCl, after 310 FT cycles (SEM-BSE)

Figure D.16 SEM-EDX micrographs for M7 (slag cement-dolomite) specimen exposed to MgCl, after 350 FT cycles;
(A) and (B) M-S-H, (C) Friedel’s salt and (D) chloride deposits in C-S-H (SEM-BSE)

Figure D.17 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to CaCl, after 310 FT cycles (SEM-BSE)

Figure D.18 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to MgCl, after 310 FT cycles;
(A) and (B) brucite, (C) M-S-H and (D) Friedel’s salt (SEM-BSE)

Figure D.19 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to NaCl after 310 FT cycles; (A) and
(B) chloride deposits within the matrix C-S-H, (C) & (D) Friedel’s salt (SEM-BSE)

Figure D.20 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to distilled water (DST)
after 310 FT cycles (SEM-BSE)

Figure E.1 Concentration variation of (a) calcium, (b) aluminum and (c) chloride ions
Figure F.1 Example of calculation of quantities of raw materials required

Figure F.2 Input variables for calculation of cost of concrete pavement
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1. INTRODUCTION

Concrete, a composite material composed of aggre-
gates, cement and water, is the most widely used man-
made material in the world (Chemistry World, 2008).
Concrete is being used in a wide range of application,
including buildings, bridges, dams and pavements.
Although many different types of concrete have been
developed for different applications, they all share some
common positive features which include: versatility, stre-
ngth, durability, availability, fire resistance and compar-
atively low cost (Imbabi, Carrigan, & McKenna, 2012).

A report by Cement Sustainability Initiative (CSI,
2009), has estimated that roughly more than 25 billion
tons of concrete were manufactured globally in 2009
and that amount keeps increasing each year. As a
result, the demand for concrete’s ingredients elevates
proportionally to concrete production. Ordinary port-
land cement (OPC), is a dominant ingredient of con-
crete (Imbabi et al., 2012) serving as bonding agent
once reacted with water through the hydration process.
In typical concrete mixture, OPC occupies 10% to 15%
of the total volume of concrete (Portland Cement
Association, n.d.). That requires manufacturing of high
amount of cement in order to fulfill the needs in
concrete construction. To meet that high demand, more
than 4 billion tons of OPC were produced worldwide in
2013, and this number has increased in the following
year (USGS, 2015). Of concern to the cement industry
is the fact that every tone of OPC produced releases on
average a similar amount of CO, into the atmosphere
(Chen, Habert, Bouzidi, & Jullien, 2010; Imbabi et al.,
2012). Another concern is related to the depletion of
fossil fuels, which are used as the major energy source in
cement production. Those challenges in cement industry
have triggered a strong push toward the innovation in
cement production, mainly with respect to reduction, or
even elimination, the previously mentioned drawbacks
cement production. In this regard, the use of other cemen-
titious materials (i.e., fly ash and slag cement), which are
by products of other industry, have been proven to be a
viable alternative (Chen, 2006; Hale, Freyne, Bush, &
Russell, 2008; Hooton, Stanish, & Prusinski, 2004; Jun-
Yuan, Scheetz, & Roy, 1984; Man & Jing, 2012; Verian,
2012; Verian, Panchmatia, Olek, & Nantung, 2015). The
development of other type of binders, as the type which
result in lower CO, emissions, is also being pursued
(Solidia Technologies, n.d.).

1.1 Background

Efforts to produce more sustainable concrete pave-
ments have led to the use of alternative materials as a
substitute for the generally used concrete ingredients,
i.e., cement and natural aggregates. It is estimated that
the carbon dioxide (CO,) emitted from the cement pro-
duction represents 5%—7% of the global CO, emission
(Chen et al., 2010). Meanwhile, problems related to the
availability of natural aggregates also emerge due to the
depletion of existing sources, restrictions on developing

new quarries and the increase in cost of mining and
transportation (Verian, 2012). In practice, fly ash and
slag cement are commonly used as partial replacement
of cement in concrete mixtures. In addition, the air-
cooled blast furnace slag (ACBFS) has been used as
source of coarse aggregate since at least the 1930s
(Morian, Van Dam, & Perera, 2012). Recently however,
some concerns arose regarding the use of ACBFS as
coarse aggregate in concrete mixtures. These concerns
appear to be related to the physical characteristic and
the chemical composition of ACBFS (Morian et al.,
2012), and include variability of specific gravity and
porosity (which, if not properly accounted for, may lead
to potential moisture control problems during batching)
as well as dissolution of calcium sulfide (CaS) with
resulting formation of calcium sulfate (CaSQ,). The
presence of CaSQOy in concrete exposed to water may, in
turn, lead to formation of secondary ettringite (6:CaO
Al,03SO332H,0) and thaumasite (Cag[Si(OH)g](SO4)»
(COs),). Although it is not clear to what extent the
formation of secondary ettringite may influence the
durability of concrete with ACBFS, some concerns
include potential infilling of the air void system, thus
reducing its efficiency in providing the FT resistance.

1.2 Literature Review

A review of the literature related to the materials
used in this study, i.e., ACBFS coarse aggregate, fly
ash, slag cement and deicers are discussed in this
chapter. This chapter also provides the information
regarding the effect of the aforementioned materials to
concrete properties.

1.2.1 Slag Aggregate

Slag is a byproduct of metallurgical operations, and
typically contains gangue from the metal ore, flux
material and unburned fuel constituents (Morian et al.,
2012). The ACBFS is categorized as ferrous slag as it is
derived from the production of pig iron. Although the
chemical composition of the ACBFS used in this study
was not specifically tested, the information provided by
the supplier indicates that such material typically con-
tains four major components, which are lime (CaO;
30%—40%), silica (SiO,; 28%-42%), alumina (Al,Ox3;
5%—-22%) and magnesia (MgO; 5%—15%). These oxides
account for approximately 95% of ACBFS composition
(see Table 1.1) with the remaining 5% consisting of
sulfur, manganese, iron, titanium, fluorine, sodium
and potassium oxides.

Chesner, Collins, and Mackay (1998) had reported
that ACBFS aggregate typically has a high angle of
friction (40 to 45 degrees). The L.A. abrasion values of
ACBFS aggregate range between 35% and 45%, its
hardness ranges from 5 to 6 (Mohs scale) and the
California bearing ratio (CBR) is typically greater than
100 due to its angular shape and rough texture (Morian
et al.,, 2012). The typical compacted unit weight of
ACBFS (measured according to ASTM C 33 (2011))

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17 1



TABLE 1.1

Typical composition of ACBFS (Morian et al., 2012).

Component Percentage

Major components 95
Lime (CaO) 30-40
Silica (SiO») 28-42
Alumina (Al,03) 5-22
Magnesia (MgO) 5-15

Minor components 5
Sulfur (CaS, other sulfides, sulfates) 1-2
Iron (FeO, Fe,03) 0.3-1.7
Manganese (MnO) 0.2-1

Rare components
Na,O + K,O0 0-1
TiO, 0-1
V,0s5 0-1
Cr203 0-1

ranges between 70 and 85 1b/ft> (Morian et al., 2012).
By comparison, the compacted unit weight of light-
weight aggregates typically ranges between 55 and 70
Ib/ft?, while that of normal weight aggregates typically
ranges between 75 and 110 Ib/ft>. Some states (e. q.
Illinois, Pennsylvania and Kentucky) require that the
compacted unit weight of ACBFS should not be lower
than 70 1b/ft’> when it is used in pavement concrete
(IDOT, 2012; KYTC, 2008; PennDOT, 2000). Slowly
cooled slag will have fewer entrapped pores and higher
degree of crystallinity, which is more desirable for
ACBFS aggregates (Morian et al., 2012). The absorp-
tion of ACBFS coarse aggregate is normally higher
(about 1% to 8%) than that of the natural aggregate
(about 0.5% to 3%). For use as an aggregate in pave-
ment concrete, the ACBFS with higher density (>2.4)
and lower absorption (less than 4%) is more desirable
(Morian et al., 2012).

Two chemical properties of ACBFS that are of
concern with respect to the use of this material as coarse
aggregate in concrete include iron unsoundness and
dicalcium silicate unsoundness (Morian et al., 2012).
Iron unsoundness becomes a problem only if partially
reduced iron oxides in the slag undergo additional
oxidation, as this process results in expansive reaction
and leads to disintegration of the ACBFS particles
(Morian et al., 2012). Testing for iron unsoundness
involves immersing pieces of slag in water for a period
of 14 days and observing whether any of the particles
crack or disintegrate. The dicalcium silicate unsound-
ness is caused by an increase in volume of the CaO-SiO,
(C5,S) phase as a result of its inversion from beta form
to gamma form during cooling. That volume expansion
will damage the ACBFS aggregate particles in a process
commonly referred to as falling (Morian et al., 2012).
Fortunately, this disruptive transformation process
occurs only during the cooling process (in the tem-
perature range from 750°F to 930°F (400°C to 500°C))
and thus it is effectively completed within a few days as
the slag reaches ambient temperature (Juckes, 2002).

Once formed, calcium sulfate (CaSQ,) can further react
with the existing monosulfate (4CaO, Al,O5-SO;-
12H50) to produce ettringite (6CaO-Al,O3-SO5 -32H,0)
(Mehta, 1983).

Unlike sulfate attack, which occurs in the presence of
alkali sulfates and involves the decalcification of C-S-H,
no decalcification of C-S-H takes place in the process
of ettringite formation since all the calcium ions are
supplied by calcium sulfate. As such, the integrity of the
hydrated cement phases remain unaffected (Morian
et al., 2012). The ettringite produced fills the air void
system. This process may initially lead to the strength
increase, but it may also compromise the effectiveness
of the air-void system with respect to freeze-thaw
protection.

The addition of limestone (CaCOs;) to Portland
cement provides carbonate, which is required for thau-
masite formation. Several researchers have found that
relatively high sulfate levels combined with alkaline con-
ditions leads to the formation of thaumasite (Collepardi,
2003; Crammond, 2003; Gaze & Crammond, 2000,
Mehta, 1983). Both of these conditions may exist in
concrete made with high-alkali cement and ACBFS, and
the potential for thaumasite-related distress increases as
the limestone content of cement increases (Morian et al.,
2012). Thaumasite formation reduces the binding capa-
city of hydrated cement in the hardened concrete and
causes loss of strength. The expansive disruption that is
normally associated with sulfate attack sometimes acc-
ompanies the formation of thaumasite, but is not a
dominating feature (Crammond, 2002).

To address the potentially adverse effects of calcium
sulfide present in ACBFS, the British Standard Insti-
tute limits the sulfur content of concrete to maximum of
approximately 2% by weight (Morian et al., 2012). The
Organization for Economic Co-operation and Devel-
opment (OECD, 1997) has published a report which
states that ACBFS must have a total sulfur content of
less than 2% and a sulfate content of less than 0.7% in
order for it to be used as concrete aggregate.

1.2.2 Deicers

During winter, concrete pavement subjected to repea-
ted freezing/thawing cycles in the presence of chloride-
based deicing chemicals suffer from two types of
deterioration: physical (expansion and cracking due
to the build-up of internal stresses) and chemical (dissolu-
tion of Ca(OH),) from concrete matrix and formation of
expansive phases (Sumsion & Guthrie, 2013). The details
information regarding about the deterioration mechan-
isms are presented in Appendix A.

1.3 Research Objectives

The main objective of this study was to evaluate the
potential of using air-cooled blast furnace slag (ACBFS)
as coarse aggregate on pavement concrete subjected to
different deicers and exposure conditions.
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1.4 Scope of Work

This study covers the evaluation of the influence of
multiple aspects (i.e., aggregate, binder system, deicers
and exposure condition) to concrete properties. A total
of eight different concrete mixtures were produced in
this study following Indiana Department Transporta-
tion (INDOT, 2010) specification and standard for pave-
ment concrete. The mixtures were prepared using two
types of coarse aggregates, ACBFS and dolomite. Four
different binder systems were used, included the follow-
ing: (a) plain — 100% portland cement (PC), two types of
binary binder systems (b) 20% fly ash (FA) + 80% PC
and (c) 25% slag cement (SC) + 75% PC, and a ternary
system (d) 17% FA + 23% SC + 60% PC. More details
regarding the scope of the current study is as follows:

- The evaluation and comparison of several properties of
ACBFS and dolomite aggregates.

- The evaluation, analysis and comparison of concrete’s
properties made with two different types of coarse aggre-
gate with different binder systems (plain, binary and ter-
nary) exposed to several types of chloride-based deicing
chemical (NaCl, MgCl, and CaCl,) while subjected to
freezing-thawing (FT) and wetting-drying (WD) condi-
tions.

- The determination and analysis of chloride ingress (i.e.,
chloride penetration depth) on concrete specimens after
being exposed for a test period to deicers while subjected to

TABLE 1.2
Materials used in the project.

either freezing-thawing (FT) or wetting-drying (WD) con-
ditions.

- The observation and analysis of the physical changes of
concrete specimens at different periods of time during the
exposure to either deicers or distilled water while sub-
jected to either freezing-thawing (FT) or wetting-drying
(WD) conditions.

- The microscopic evaluation and analysis of concrete matrix
exposed to either deicers or distilled water while subjected
to either freezing-thawing (FT) or wetting-drying (WD)
conditions.

- Benefit cost analysis on the application of air-cooled blast
furnace slag (ACBFS) as coarse aggregate in pavement
concrete.

1.5 Test Program

The materials used in this study are presented in
Table 1.2. Mill certificates for the cement, fly ash and
safety data sheet for the ACBFS aggregate are provi-
ded in Appendix B. A total of eight concrete mixtures
(compositions shown in Table 1.3) were produced.
The example of labeling scheme of the mixture used
for identification of individual mixtures is presented
in Figure 1.1.

A comprehensive suite of tests (presented in Table 1.4)
was used to assess both the plastic and hardened pro-
perties of concretes produced during this study.

Material Description

Cement (PC)
Fly ash (FA)
Slag cement (SC)

Type I Portland cement conforming to ASTM C 150
Class C fly ash met the requirement of ASTM C 618 and AASHTO M 295
Ground granulated blast furnace slag met the requirement of ASTM C 989 for grade 100

Natural coarse aggregate (NA) #8 Dolomite, obtained from Delphi Plant, IN., produced by U.S. Aggregates, Inc., INDOT source #2421

Slag aggregate (ACBFS)
Fine aggregate

#8 Air-cooled blast furnace slag (ACBFS) aggregate, produced by Edw. C. Levy Co.
#23 natural siliceous sand produced by Purdy Materials, INDOT source #2109, Lafayette, IN.

Types of binder:

PC = Portland Cement (Type 1)

FA=Fly Ash(Class C)

SC = Slag Cement (GGBFS)

T

M4-.6PC.17FA.23SC-ACBFS

Type of coarse aggregate:

> ACBFS = Air Cooled Blast
Furnace Slag
NA=Natural Aggregate
(Dolomite)

Binder proportions:

6=60%
A7=17%
23=23%

Mix #

1=100% _

Figure 1.1 Mixture labelling scheme.

of total binder’s
weight
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2. TEST RESULTS AND ANALYSIS

This chapter presents the experimental data and their
analysis for the eight laboratory mixtures used in the
study. These findings are presented in two sections, aggre-
gate test results (Section 2.1) and concrete test results
(Section 2.2).

2.1 Aggregate Test Results

With respect to all aggregate tests, aggregate sources
were tested individually and not as a combined blend of
materials unless otherwise stated. The results are discus-
sed below and more details are provided in Appendix C.

2.1.1 Sieve Analysis and Fineness Modulus

Sieve analysis test results showed that the fine aggre-
gate used in this project met INDOT specification for
#23 aggregate and all coarse aggregates (dolomite and
ACBFS) used adhered to the specification for #48’s (see
Figure C.1 in Appendix C).

2.1.2 Specific Gravity and Absorption

The aggregate test results for specific gravity and
absorption are shown in Table 2.1.

As it is indicated in Table 2.1, #8 ACBFS has lower
(2.43 vs 2.73) specific gravity and higher absorption
than #8 dolomite. The value of ACBFS specific gra-
vity in SSD condition (2.43) and absorption (3.4%)
are within the ranges reported by Levy Company
which are 2.25-2.83 and 2.3%—-3.9% for SSD specific
gravity and absorption respectively (Morian et al.,
2012, pp. 14-15). Both #8 dolomite and #8 ACBFS
satisfied INDOT’s requirement for maximum aggre-
gate absorption of 5%).

2.2 Concrete Test Results

Several tests were conducted on the fresh and hardened
concrete to characterize the properties, performance and
durability of concrete. The results are presented and dis-
cussed in the following Sub-chapters. Further details
regarding the test results and analysis of the concrete
specimens are provided in Appendix D.

2.2.1 Fresh Concrete Test Results

The slump, air content and unit weight were mea-
sured within 15 minutes after mixing. The air content of

TABLE 2.1

Specific gravity and absorptions of aggregates used in this study.

each mixture was measured using volumetric method.
Volumetric method has been reported (Morian et al.,
2012) to be more suitable (than the generally used, pres-
sure method) for determining the air content of con-
crete with ACBFS. The results are presented in Table 2.2.
During the batching process, the w/cm and the
amount of admixtures (air entraining agent and water
reducers) were varied to meet target values for slump
(1.25-3.00 inches) and air content (5.3%-9.3%) set by
INDOT for pavement concrete. Despite some varia-
tions in the slump and air content among mixtures, all
concrete produced in this study satisfied INDOT’s slump
and air content requirements for pavement concrete.

2.2.2 Hardened Concrete Test Results

The mechanical properties and durability of har-
dened concrete were evaluated following the procedures
described in several ASTM and AASHTO procedures
(as identified in Table 1.4).

2.2.2.1 Mechanical Properties. The mechanical pro-
perties of concrete evaluated included compressive
strength and flexural strength.

2.2.2.1.1 Compressive Strength. The compressive
strength data for both, the deicer-exposed specimens
and the control specimens were obtained by testing
4 x 8 in. cylindrical specimens following AASHTO T 22
(2011) standard specification. In addition, the compres-
sive strength of 3 x 3 x 3 in. cubes obtained by cutting
the deicer-exposed beam specimens at the conclusion of
the exposure period was also determined. The cubes
were found to have equivalent compressive strength to
that of the cylinder when they were tested at the same
loading rate (35+7 psi/s). The control specimens con-
sisted of two sets: C1 and C2. The specimens from the
first control set (C1) were tested after 28 days of moist
curing. The specimens from the second control set (C2)
were also moist cured and tested either at the end of
the exposure period for given exposure condition (i.e.,
deicer + environmental cycling combination) or when
the corresponding beams failed. The 28-day compressive
strength data of the control set C1 and the compressive
strength data for control set 2 (C2) are presented in
Figure 2.1.

By using Tukey pair wise comparison with 95% con-
fident level (o« = 0.05), the 28-day compressive strength
(control set 1 (C1)) of eight different types of concretes
were classified into four different groups as presented in
Table 2.3.

Aggregates Specific gravity (SSD) Absorption (%) INDOT’s max. absorption limit (%)
#8 Dolomite 2.73 1.1 50

#8 ACBFS 2.43% 3.4% ’

#23 Sand 2.56 2.1 -

“Data obtained from aggregate supplier.
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TABLE 2.2

Fresh concrete properties, w/cm, and the dosage of admixtures.

M7-

75PC.25SC-

Me-

.8PC.2FA-

M5-

M3-

75PC.25SC-

M2-

.8PC.2FA-

Target

MS8-.6PC.17FA.

1PC-

M4-.6PC.17FA.

M1-1PC-
ACBFS

range

23SC-NA

NA

NA

NA

23SC-ACBFS

ACBFS

ACBFS

Mixture designations

1.25-3.00°
6.5 (5.3-9.8)¢

2.8

2.7

2.7
6.7
142.9

2.3

2.3

1.6
6.4

137.2

2.8

1.9
6.9

136.3

Slump (in)

6.9
142.6

6.4
142.4

6.2
143.4

6.5
135.9

6.7
135.6

Air content (%)

0.42 (0.39-0.45)°

Unit weight (Ibs/ft>)

w/cm

0.40
1.0

2.2

0.41
1.0
2.6

0.42
1.0
2.2

0.42
1.0
2.2

0.40

0.39

0.42
1.0
2.0

0.42
1.0
2.0

1.4
2.0

1.7
6.0

Air entraining agent®
Water reducer®

#fl. 0oz /100 lbs of cementitious (Microair). Manufacturer’s recommended range (0.5-3 fl. 0z/100 lbs of cementitious).

At the confidence level 95%, the 28-day compressive
strengths of M3, M4 and M7 concretes are not sta-
tistically different as those mixtures were assigned into
the same group (A). Similarly, the 28-day compressive
strength of M4, M7 and M8 were identified as not
being significantly different. The 28-day compressive
strength of M3 is significantly different from that of M8
at the 95% confidence level. Table 2.3 shows that the
28-day compressive strengths of M1, M2, M5 and M6
are considered statistically comparable as they were
classified into the same group (D). The mixtures with
slag cement (M3, M4, M7 and M8) were found to have
higher 28-day of compressive strength than the mix-
tures without slag cement (M1, M2, M5 and M6). This
finding indicates that beside the later hydration of slag
cement, the lower w/cm of mixtures with slag cement
(0.39-0.40) also contributed to generating higher 28-day
compressive strength. The compressive strength of con-
crete made with ACBFS as coarse aggregate was found
to be slightly higher (but not significantly different at
o = 0.05) than the identical concrete made with dolo-
mite coarse aggregate. The internal curing provided
by ACBFS can be the reason for slightly higher 28-day
compressive strength of ACBFS concretes.

The results of statistical analysis results of the com-
pressive strength of control 2 (C2) specimens are pre-
sented in Table 2.4. The compressive strength of control
set 2 (C2) specimens from M7, M2, M4 and M3 mix-
tures are considered statistically similar. On the other
hand, the compressive strength values of specimens for
control set 2 (C2) mixtures (M3, M6, M8, M5 and M1)
are classified in the same group (B), meaning they are
comparable. The effect of type of binder system and
type of coarse aggregate to the compressive strength of
control set 2 (C2) specimens are difficult to ascertain
due the lack of specific trend in the results as presented
in Table 2.4.

2.2.2.1.2 Flexural Strength. The flexural strength
values of control specimens were obtained following
the procedure of AASHTO T 97 (2011). The prismatic
(6 x 6 x 21 in.) beams were tested after 7 and 56 days of
moist curing. The flexural strength test results are sum-
marized in Figure 2.2.

As seen from Figure 2.2, all mixtures used in this
study satisfied INDOT’s minimum requirement for
flexural strength at 7 days (570 psi). In addition, the
flexural strength of all mixtures increases with age. The
effect of coarse aggregate type on concrete’s flexural
strength is considered to be insignificant as the flexural
strength of concrete made with ACBFS coarse aggre-
gate was found to be comparable (i.e., it was less than
10% different) from the flexural strength of similar
concrete made with dolomite.

There is no evidence of fly ash improving concrete’s
flexural strengths as flexural strength values of plain
concretes are comparable to the flexural strength values
of concrete containing fly ash (M1 vs. M2 and M5 vs.
M6). Concretes with slag cement (M3 and M7) and
combination of fly ash and slag cement (M4 and M)
yielded either comparable or higher flexural strengths

°f1. 0z /100 Ibs of cementitious (Glenium 3030NS). Manufacturer’s suggested range (2—6 fl. 0z/100 Ibs of cementitious).

‘INDOT’s limit for slump (1.25-3.00 in).
JINDOT’s limit for air content based on single sample measurement.

*INDOT’s limit for w/cm (0.42 4+ 0.03).
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® Control set2(C2)

Compressive strength (psi)

For specimen exposed to  |Specimens of M1-CaCl,-FT failed ate 111 FT cycles, the other M1 specimens were
freezing-thawing (FT) test after 347 FT cycles.
cycles Specimens of M5-CaCl,-FT failed ate 151 FT cycles, the other M5 specimens were

test after 350 FT cycles.
Specimens of M2 and M6 were test after 347 and 350 FT cycles, respectively.

For specimen exposed to  |[M1, M2, M5 and M6 specimens were test after 286 WD cycles.
wetting-drying (WD) cycles|M3, M4, M7 and M8 specimens were test after 226 WD cycles.

Figure 2.1 The average compressive strengths of control set 1 (C1) and control set 2 (C2) concretes.

TABLE 2.3

Tukey pair wise comparison test results of 28-day compressive strength.

Mix # 28-day compressive strength (psi), C1 Tukey grouping
M3-.75PC.25SC-ACBFS 7740 A
M4-.6PC.17FA.23SC-ACBFS 7415 A B
M7-.75PC.25SC-NA 6739 A B
MB8-.6PC.17FA.23SC-NA 6525 C B
M2-.8PC.2FA-ACBFS 5655 C D
M1-1PC-ACBFS 5488 D
M6-.8PC.2FA-NA 5374 D
M5-1PC-NA 5160 D
TABLE 2.4

Tukey pair wise comparison test results of the compressive strength of control 2 (C2) specimens.

Mix # Control 2 compressive strength (psi), C2 Tukey grouping
M7-.75PC.25SC-NA 7380 A
M2-8PC.2FA-ACBFS 6998 A
M4-.6PC.17FA.23SC-ACBFS 6988 A
M3-.75PC.25SC-ACBFS 6825 A B
M6-.8PC.2FA-NA 6569 B
MS-.6PC.17FA.23SC-NA 6480 B
MS5-1PC-NA 6325 B
MI1-1PC-ACBFS 6243 B
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Figure 2.2 Flexural strength at 7 and 56 days of concrete form different mixtures.

than plain concretes (M1 and M5). However, it should
be remembered that the effects of slag cement (and the
combination of fly ash and slag cement) on the flexural
strength might be influenced (skewed) by lower w/cm of
those concretes.

2.2.2.2 Durability Properties. Several tests were
conducted to evaluate the durability properties of dif-
ferent concrete mixtures. These tests included the deter-
mination of changes in dynamic modulus of elasticity
(DME) (by measuring resonant frequency), chloride
penetration depth measurements, and SEM analysis
of the microstructure of concrete samples exposed to
freezing/thawing and wetting/drying cycles in the pre-
sence of deicing solutions.

2.2.2.2.1 Relative Dynamic Modulus of Elasticity
(RDME). The results for the relative dynamic modu-
lus of elasticity (RDME) of concretes exposed to deicers
undergoing FT and WD cycles are presented as the
percent change in the final reading of RDME (after the
completion of exposure regime) with respect to the initial
(i.e., obtained before initiation of the exposure) value of
RDME. The values of changes in RDME for all concrete
mixtures in this study (along with the exposure condi-
tions) used, are presented in Table 2.5. The detailed
results of the RDME measurements for all concrete mix-
tures used in this study are presented in Figure C.2 to
Figure C.5 in Appendix C.

The specimen was classified for having comparable
final RDME value with respect to the initial value,
if the ARDME was in the range of +20 from the
average. In data set with normal distribution, this range
(average +20) covers 95% data from the population

(Montgomery, 2013). The values of mean (i) and stan-
dard deviation (o) of the ARDME are 0.99% and 7.13%,
respectively.

The results highlighted in Table 2.5 indicate that
CaCl, deicer had the most severe effect with respect to
reducing the RDME of plain concretes (M1 and M5) as
the reductions in RMDE were shown to be statistically
significant. This observation applies to M1 specimens
exposed to CaCl, under FT and WD conditions and
M5 specimens exposed to CaCl, and FT condition). It
should be noted that M1-CaCl,-FT and M5-CaCl,-FT
specimens failed, respectively, after 111 and 151 FT cycles.

The effect of MgCl, and NaCl on the RDME is
not as significant as that of CaCl,. The aggressivity of
MgCl, however, was noticeable in plain specimen with
dolomite (M5). This might due to the contribution of
magnesium ions leached out from dolomite aggregate
to detrimental chemical reactions with concrete’s hydra-
tion products. The results presented in Table 2.5 indicate
that the majority of control specimens (i.e., C2 series,
continuously moist cured for up to 350 days) have
experienced increase in the values of RDME. This is to
be expected, as the specimens were kept in the curing
chamber with 23 + 2°C and >95% RH, and such con-
ditions promote additional hydration. The fact that the
other specimens have showed inferior performance, in
terms of RDME, compared to the control specimens,
indicates that there was a negative effect of the applied
exposure conditions (i.e., deicers + FT or deicers + WD)
with respect to concrete performance.

The LS mean values from the data presented in
Table 2.6 for each factor are summarized in Table 2.6.
The significance of each factor in the changes of RDME

8 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



TABLE 2.5

Changes in the final RDME values with respect to the initial values.

M4-.6PC.17FA.23SC-

M1-1PC-ACBFS M2-.8PC.2FA-ACBFS M3-.75PC.25SC-ACBFS ACBFS
Exposure Deicer A RDME A RDME A RDME A RDME (%)
condition (%) (%) (%)
Freezing- CaCl, [-18.3] > [-6.3] “ [0.4] “ [3.7]
thawing (FT) MgCl, L [4.8] > [-7.3] > [-4.2] > [3.4]
NaCl = [6.8] = [4.7] PN [3.9] o [5.6]
DST L [12.5] > [7.5] > [9.3] > [11.1]
Wetting-drying CaCl, [-17.2] > [0.6] > [-3.3] > [0.4]
(WD) MgCl, > [-2.1] > [-0.5] > [-3.1] > [3.5]
NaCl L [1.9] e [2.9] e [0.2] > [5.8]
DST L [1.0] > [2.2] > [3.0] > [3.2]
Control specimen set 2 (C2) L [13.1] > [9.6] > [10.1] > [14.1]
MS5-1PC-NA M6-.8PC.2FA-NA M7-75PC.25SC-NA MS8-.6PC.17FA.23SC-NA
Exposure Deicer A RDME (%) A RDME (%) A RDME (%) A RDME (%)
condition
Freezing- CaCl, [-24.6] > [3.4] > [-0.5] > [-1.9]
thawing (FT) MgCl, [-19.4] > [-0.6] > [3.5] > [2.3]
NacCl L [4.9] > [12.8] > [2.2] > [0.8]
DST = [11.1] PN [13.9] PN [8.0] o 4.7
Wetting-drying CaCl, L [-5.6] > [0.8] > [1.1] > [-1.2]
(WD) MgCl, L [-8.4] > [0.0] > [1.0] > [-1.6]
NacCl > [1.9] > [2.8] > [5.9] > [3.4]
DST L [2.0] e [4.1] e [4.3] L [3.3]
Control specimen set 2 (C2) > [11.0] [19.1] > [8.8] > [12.1]

Notes:

= statistically significant increase (more than 2¢ above the average).

= statistically significant decrease (more than 2¢ below the average).

<> = statistically comparable (within +2¢ from the average).
[xx] = percent change of RDME.
For specimens exposed to freezing-thawing (FT) cycles:

» M1-CaCl,-FT specimens failed after 111 FT cycles, the other M1 specimens were tested after 347 FT cycles.
e M5-CaCl,-FT specimens failed after 151 FT cycles, the other M5 specimens were tested after 350 FT cycles.
« M2 and M6 specimens were tested after 347 and 350 FT cycles, respectively.

For specimens exposed to wetting-drying (WD) cycles:

« M1, M2, M5 and M6 specimens were tested after 286 WD cycles.
« M3, M4, M7 and M8 specimens were tested after 226 WD cycles.

was analyzed using ANOVA and the results are presented
in Table 2.7.

The values highlighted in bold indicate the main
effects and interaction effects that have significant
(p-value<<0.05) influence on the response variable (i.e.,
ARDME). Both binder (X1) and deicer (X4) types were
found to have a significant influence to the change of
RDME. The other two factors, type of aggregate and type
of exposure conditions were found to not have a signi-
ficant effect on the change in RDME. Three interaction
effects were also found to have a significant influence on
the ARDME (i.e., X1*¥X4, X3*X4 and X1*¥X2*X3).

Tukey’s multiple comparison method was used to
analyze the level of influence of the type of binder on
the ARDME. The results of this analysis are presented
in Table 2.8.

The results shown in Table 2.6 and Table 2.8 indicate
that incorporation of fly ash, slag cement (and the com-
bination of both materials) into concrete has a signif-
icant positive influence on concrete’s performance in
terms of the ARDME values. Specifically, the results
indicate that the binary and the ternary binder system
used in this study have relatively similar impact on
concrete’s performance in terms of the ARDME.

The Tukey’s multiple comparison method was also
used to analyze the impact of the type of deicers on the
ARDME. The results are presented in Table 2.9.

The results in Table 2.9 indicate that CaCl, and
MgCl, have statistically significantly different effects on
ARDME compared to NaCl and distilled water (DST).
This also implies that CaCl, have statistically compar-
able effects on ARDME compared to MgCl,.
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2.2.2.2.2 Chloride Penetration Depth. The depth of
chloride ion penetration into the specimens was deter-
mined after completion of the FT and WD exposures.
This was accomplished by cutting the specimen in the
direction perpendicular to the long axis and spraying
the resulting cross-section with the 0.1 mol/L solution
of silver nitrate. An example of cut cross sections
sprayed with silver nitrate and the position from which
it was cut from a beam specimen is presented in Figure
2.3. The cross sections of the beams illustrating the
depth of chloride penetration are presented in Figure
C.6 to Figure C.13 in the Appendix C.

The reaction of silver nitrate with chloride ions
results in formation of grayish-colored layer of silver

TABLE 2.6

The least square (LS) means values for the differences in RDME
values of FT and WD specimens exposed to deicers after exposure
when compared to the initial RDME values.

Type of binder (X1) LS mean
100% PC -3.04
20%F A+80%PC 2.56
25%SC+75%PC 1.54
17%F A+23%SC+60%PC 291
Aggregate type (X2) LS mean
ACBFS 1.13
Dolomite 0.86
Exposure condition (X3) LS mean
Freezing-thawing (FT) 1.60
Wetting-drying (WD) 0.38
Type of deicers (X4) LS mean
CaCl, -4.28
MgCl, -2.23
NacCl 4.16
DST* 6.33

Distilled water.

TABLE 2.7

chloride. The thickness of this layer was measured
(using a digital caliper) at several locations (indicated
by arrows added to pictures of cross sections shown in
Figure 2.3). These measurements were used to calculate
the average depth of chloride penetration as presented
in Table 2.10. It should also be noted that the area
outside of the grayish-colored zone is typically not
entirely chloride free but its existing chloride levels are
too low (typically below 0.01%) to be detected by this
colorimetric method.

The average of chloride penetration depth of speci-
mens from each concrete mixture exposed to NaCl,
CaCl, and MgCl, were analyzed using analysis of
variance (ANOVA). The LS means and the ANOVA
results of the average chloride penetration depth are
presented in Table 2.11 and Table 2.12, respectively.

Results presented in Table 2.12 indicate there are
three main effects (i.e., type of binder, exposure con-
dition and type of deicer) that have a significant impact
on the chloride penetration depth at 95% confidence
level. Along with those main effects, four interaction
effects (i.e., X1*X3, X1*X4, X1*X2*X3 and X1*X3*
X4) are also found to have statistically significant
influences on the response variable (i.e., chloride pene-
tration depth).

Tukey’s multiple comparison analysis results on the
effects of type of binder system and the type of deicers
on the chloride penetration depth are presented in
Table 2.13 and Table 2.14, respectively.

Tukey’s multiple comparison analysis results indicate
that both the binary (20%FA+80%PC and 25%SC+
75%PC) and the ternary (17%FA+23%SC+60%PC)
binder systems used in this study have statistically sig-
nificant influence on reducing the ion chloride penetra-
tion depth when compared to that of plain (100%PC)
concrete. This happens due to the densification of con-
crete matrix as the results of pozzolanic reaction and
the latent hydration reactions which are promoted by
fly ash and slag cement, respectively.

The results of the analysis of variance (ANOVA) for the differences in RDME values of FT and WD specimens exposed to deicers after

exposure when compared to the initial RDME values.

Source DF Sum of squares Mean square F value p-value
Binder type (X1) 3 363.56 121.19 14.13 0.0009
Aggregate type (X2) 1 1.18 1.18 0.14 0.719
Exposure condition (X3) 1 23.64 23.64 2.76 0.1312
Deicer type (X4) 3 1226.40 408.80 47.66 <.0001
X1*X2 3 170.49 56.83 6.63 0.0118
X1*¥X3 3 4.99 1.66 0.19 0.8978
X1*X4 9 578.89 64.32 7.50 0.0031
X2*X3 1 24.13 24.13 2.81 0.1278
X2%X4 3 45.90 15.30 1.78 0.2201
X3*X4 3 218.58 72.86 8.49 0.0054
X1*¥X2*X3 3 153.58 51.19 5.97 0.016
X1*X2*¥X4 9 151.92 16.88 1.97 0.1638
X1*¥X3*X4 9 152.63 16.96 1.98 0.1622
X2*X3*X4 3 6.98 2.33 0.27 0.8447
R’ 0.98
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TABLE 2.8

The results of Tukey’s multiple comparison analysis on the effects of the type of binder system on the change in RDME values of concrete

after exposure period when compared the initial RDME values.

Binder system 100% PC 20%FA+80%PC 25%SC+75%PC 17%F A+23%SC+60%PC
100% PC 0.002 0.0073 0.0013

20%F A+80%PC 0.002 0.7619 0.9866
25%SC+75%PC 0.0073 0.7619 0.5763

17%F A+23%SC+60%PC 0.0013 0.9866 0.5763

TABLE 2.9

The results of Tukey’s multiple comparison analysis on the effects of the type of deicers on the change in RDME values of concrete after

exposure period when compared the initial RDME values.

Type of deicers CaCl, MgCl, NaCl DST
CaCl, 0.2637 <0.0001 <0.0001
MgCl, 0.2637 0.0008 <0.0001
NaCl <0.0001 0.0008 0.2257
DST <0.0001 <0.0001 0.2257
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Figure 2.3 An example of cross section of specimen with its location from the original beam.

The results presented in Table 2.14 have indicated
that the effects of each type of deicers used in this study
(i.e., NaCl, MgCl, and CaCl,) on the chloride pene-
tration depth are significantly different among the type
of deicers. Among the deicers, the chloride penetration
depth on the specimens exposed to MgCl, was found to
be the lowest, followed by that of CaCl,. The formation
of brucite (Mg(OH),) in the area near concrete’s sur-
faces as the result of chemical reaction between mag-
nesium ion with portlandite contributes to the lower
chloride ingress in the matrix.

2.2.2.2.3 Physical Changes in the Appearance of
Concrete Specimens. Pictures of the prismatic speci-
mens were taken at different stages of exposures to
capture the physical changes in the appearance of the
specimens and to document any signs of deteriorations
of the FT and WD specimens exposed to deicers. Plain
concrete (M1 and MJ5) specimens exposed to CaCl,
have demonstrated severe deterioration as shown from
Figure 2.4 to Figure 2.7.

Figure 2.4 clearly shows the first sign of deterioration
were observed as early as after about 35 FT cycles.

After undergoing 102 FT cycles, the specimen shows a
very extensive damage (in the form of cracking and
spalling). In fact the damage to this specimen started to
exponentially accelerate with each of additional FT
cycle to the point that it failed (that is it was impossible
to obtain consistent readings of resonant frequency)
after 111 FT cycles. The deterioration started at the
corner and propagated along the edges. Cracks visible
on the surface tend to be parallel to the length of the
specimen. The changes in physical appearance of this
specimen were accompanied by reduction of the values
of relative dynamic modulus of elasticity (RDME) which
decreased approximately 20% after 111 FT cycles.
At the same time, the RDME values of the rest M1
specimens have slightly increase over time. In fact,
after 347 FT cycles, that increase was about 3%—10%
with respect to the initial RDME values (see Figure C.2(A),
Appendix C).

Similar to M1 specimens showed in Figure 2.4, M5
specimens exposed to CaCl, under FT condition had
started to deteriorate at 42 FT cycles as shown in
Figure 2.5. The deterioration started at the corner and
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Average chloride penetration depth for different concretes exposed to different deicers.

TABLE 2.10

—
[\9)

Average chloride penetration depth (mm)

MB8-.17FA.23SC.
6PC-NA (ternary -

M7-.75PC.25SC-

MS5-1PC-NA M6-.8PC.2FA-

M4-.17FA.23SC.6PC-

M3-.75PC.25SC-

M2-.8PC.2FA-

MI1-1PC-
ACBFS (plain ACBFS (fly ash

NA (slag cement -

NA (fly ash -

ACBFS (ternary - (plain -

ACBFS (slag
cement - ACBFS)

Exposure

dolomite)

dolomite) dolomite)

dolomite)

ACBFS)

Deicers - ACBFS) - ACBFS)

condition

11.8

16.6 13.9

20.0

13.8

13.7

17.8

19.2

NaCl
thawing (FT) CaCl,

Freezing-

13.0

11.8

10.5

19.8

14.5

12.9

12.4

17.4

6.6

5.0 10.6

16.1

9.3

8.3

4.9

8.4

MgClz

18.2

16.5

21.6

16.8

21.9

14.6

19.4

21.6

Wetting-drying NaCl

12.3

13.6

15.2

17.7

14.3

14.3

12.5

23.3

CaCl,
MgCl,

(WD)

13.1

12.3

13.7

10.5

12.0

12.2

14.1

10.6

Notes:

For specimens exposed to freezing-thawing (FT) cycles:

* M1-CaCl,-FT specimens failed after 111 FT cycles, the other M1 specimens were tested after 347 FT cycles.
« M5-CaCl,-FT specimens failed after 151 FT cycles, the other M5 specimens were tested after 350 FT cycles.

*« M2 and M6 specimens were tested after 347 and 350 FT cycles, respectively.

For specimens exposed to wetting-drying (WD) cycles:

« M1, M2, M5 and M6 specimens were tested after 286 WD cycles.

« M3, M4, M7 and M8 specimens were tested after 226 WD cycles.

TABLE 2.11

The least square (LS) means values for the chloride ions
penetration depth of FT and WD specimens exposed to deicers
after the exposure regime.

Type of binder (X1) LS mean
100% PC 16.78
20%F A+80%PC 13.64
25%SC+75%PC 12.89
17%F A+23%SC+60%PC 13.40
Aggregate type (X2) LS mean
ACBFS 14.31
Dolomite 14.05
Exposure condition (X3) LS mean
Freezing-thawing (FT) 12.85
Wetting-drying (WD) 15.51
Type of deicers (X4) LS mean
CaCl, 14.72
MgCl, 10.48
NacCl 17.34

then propagated to the edges of the specimen. The
damages of the specimen were very comprehensive after
139 FT cycles and eventually the specimen failed at
151 FT cycles. The superiority of dolomite aggregate
compared to ACBFS is indicated by the fact that M5
specimens could withstand up to 151 FT cycles while
M1 specimens were failed at 111 FT cycles under the
exposure of CaCl, deicer.

Figure 2.6 shows that M1 specimen under the expo-
sure of CaCl,+WD had experienced extensive damaged
after 176 WD cycles. The damages were progressively
increased as the corners and edges of the specimens
crumbled after 281 WD cycles. However, unlike M1
specimens exposed to CaCl,+FT condition which failed
at 111 FT cycles, M1 specimens exposed to CaCl,L+WD
condition did not fail even after 286 WD cycles (as shown
by the RDME reading in Figure C.4(A), Appendix C).
This indicates that FT temperature cycle has higher
degree of severity in damaging concrete than WD cycle
despite of higher deicer concentration used in WD condi-
tion (10.5 molar vs. 5.5 molar).

Comparing the damage of M1 specimen showed
in Figure 2.6 to the damage of M5 specimen showed
in Figure 2.7, one can tell that the damage of M5
specimen does not as severe as what occurred on M1
specimen. This finding is similar to the specimen
exposed to CaCl,+FT condition which the dolomite
specimens (M5) have maintained longer stable RDME
readings (151 FT vs. 111 FT cycles) than the specimens
made with ACBFS coarse aggregate (M1) before they
failed.

Following the specimens exposed to CaCl,, only M5
specimens exposed to MgCl, under FT condition had
experienced minor damaged. No observable damages
were found on the rest of the specimens (i.e., FF and
WD specimens exposed to NaCl and distilled water).
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TABLE 2.12
The results of the analysis of variance (ANOV A) for the chloride ions penetration depth of FT and WD specimens exposed to deicers after
the exposure regime.

Source DF Sum of squares Mean square F value p-value
Binder type (X1) 3 112.02 37.34 22.58 0.0011
Aggregate type (X2) 1 0.80 0.80 0.48 0.5126
Exposure condition (X3) 1 85.33 85.33 51.59 0.0004
Deicer type (X4) 2 383.05 191.53 115.79 <.0001
X1*¥X2 3 9.73 3.24 1.96 0.2214
X1*X3 3 42.15 14.05 8.49 0.014
X1*¥X4 6 80.45 13.41 8.11 0.0112
X2*X3 1 3.20 3.20 1.94 0.2134
X2¥X4 2 9.73 4.86 2.94 0.1288
X3*X4 2 11.15 5.58 3.37 0.1044
X1*¥X2*X3 3 39.86 13.29 8.03 0.016
X1*X2*X4 6 16.35 2.73 1.65 0.2796
X1*¥X3*X4 6 52.17 8.69 5.26 0.0317
X2*¥X3*X4 2 0.67 0.34 0.20 0.8219
R’ 0.99

TABLE 2.13

The results of Tukey’s multiple comparison analysis on the effects of the type of binder system on the chloride ions penetration depth
values of concrete specimen after the exposure regime.

Binder system 100% PC 20%FA+80%PC 25%SC+75%PC 17%FA+23%SC+60%PC
100% PC 0.004 0.0013 0.0027
20%FA+80%PC 0.004 0.5278 0.9651
25%SC+75%PC 0.0013 0.5278 0.7718

17%F A+23%SC+60%PC 0.0027 0.9651 0.7718

TABLE 2.14

The results of Tukey’s multiple comparison analysis on the effects of the type of deicers on the chloride ions penetration depth values of
concrete specimen after the exposure regime.

Type of deicers CaCl, MgCl, NaCl
CacCl, 0.0002 0.0029
MgCl, 0.0002 <0.0001
NacCl 0.0029 <0.0001

Figure 2.4 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 35, 59 and 102 FT cycles. Specimen failed after 111 FT cycles.

The complete sets of pictures demonstrating the MgCl, and NaCl) and distilled water (DST) under

extend of physical changes in the specimens from eight freezing-thawing (FT) and wetting-drying (WD) cycles
different mixtures, exposed to different deicers (CaCl,, is presented Appendix C (Figure C.14 to Figure C.77).
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Figure 2.5 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens
exposed to CaCl, after (from left to right) 42, 65, 118 and 139 FT cycles. Specimen failed after 151 FT cycles.

Figure 2.6 Physical changes in the appearance of the representative sample of MI1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure 2.7 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens
exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles.

2.2.3 Scanning Electron Microscopy (SEM) Observations

Once the exposure of the beam specimens was
completed (either after completion of FT/WD cycles
or upon premature failure), part of the beams were
sawed-off and used to prepare the specimens for SEM
analysis. The location of the sample taken for SEM

analysis and the example of finished SEM specimen are
shown in Figure 2.8.

From each specimen exposed to deicers, the SEM
samples were taken from the corner of the beams, con-
sidering the extent of chloride penetration and asso-
ciated potential changes in the microstructure due to
chemical reactions involving chloride.
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The deposits of Friedel’s salt (C;A.CaCl,.10H,0)
(Figure 2.9, Figure 2.10, Figure 2.11(A) and (B)) and
chloride (Figure 2.11(C) and (D), Figure 2.12(A) and
(B)) were observed in all SEM specimens despite of the
different types of coarse aggregate, binder system and
exposure conditions. In addition, remnants of unreac-
ted binders beside OPC (fly ash, slag cements or com-
bination of both) were also found in the specimens
which binder system containing fly ash (M2 and M6),
slag cement (M3 and M7) and combination of both fly
ash and slag cement (M4 and M&8) as shown in Figure 2.9
and Figure 2.10.

Specimens exposed to magnesium chloride solution
show evidence of brucite (Mg(OH),) and magnesium
silicate hydrate (M-S-H) formation (see Figure 2.13
and Figure 2.14). The formation of M-S-H, which is
not cementitious, reduced the strength of the matrix.
In addition, the physical appearance of M-S-H itself
which found to possess cracks (as shown in Figure 2.13),
also implies as weaker region than C-S-H. Calcium oxy-
chloride like phase was detected in specimens exposed to
calcium chloride (Figure 2.15).

The SEM analysis on concrete with ACBFS coarse
aggregate indicated the presence of calcium sulfide

b — .

2"

Figure 2.8 An example of SEM sample and the location from
which it was obtained.

(CaS) within the aggregate particles as shown in Figure
2.16 to Figure 2.18.

In some cases, the dissolution of calcium sulfide from
ACBFS leaves empty voids in the ACBFS near the
aggregate-matrix interface as shown in Figure 2.18. These
empty spaces potentially weaken ACBFS’s matrix as
multiple cracks propagate through the empty voids. Fur-
thermore, once the sulfide released from ACBFS converts
into sulfate, it can contribute to formation of ettringite,
which causes cracking due to localized heterogeneous
expansion experienced by concrete in the region where
ettringite is formed (Collepardi, 2003).

Ettringite formation was not exclusively observed in
concrete containing ACBFS, but was also detected in
concrete made with dolomite. However, the frequency
of ettringite detected (using SEM) in the matrix of
concrete with natural dolomite was lower than that in
concrete with ACBFS aggregates. Ettringite is expansive,
and therefore its formation can increase the crack width
(of the pre-existing micro-cracks) or fill in the available
spaces. Pores filled with ettringite reduce the freeze-thaw
durability of concrete. In a sulfate depleted environment,
the ettringite forms into monosulfate. The morphology
and energy dispersive X-ray signature of ettringite in
concrete containing ACBFS and natural dolomite
are shown in Figure 2.19 (A) and (B), respectively.
The completed set of SEM results in this study are
presented in Appendix D.

2.3 Pore Solution Analysis Results

The variation in the concentration of sodium and
potassium ion in the pore solution with age is presented
in Figure 2.20 (A) and (B), respectively.

Figure 2.20 indicates that for mixtures without slag
cement (Mix 1 and Mix 2), both sodium and potassium

VFS = Vertical Full Scale

Figure 2.9 Deposits of Friedel’s salt and remnants of unreacted binder particles (fly ash and slag cement) found in SEM sample
extracted from M4 (ternary-ACBFS) specimen exposed to CaCl, after 310 FT cycles (SEM-BSE).
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Friedel’s Salt

Slag Cement
VFS = Vertical Full Scale

Figure 2.10 Deposits of Friedel’s salt and remnants of unreacted binder particles (fly ash and slag cement) found in SEM sample
extracted from M8 (ternary-dolomite) specimen exposed to MgCl, after 310 FT cycles (SEM-BSE).

Figure 2.11 SEM-EDX micrographs for specimen from M1 (plain-ACBFS) mixture — exposed to CaCl, after 111 FT cycles;
(A) and (B) Friedel’s salt, (C) & (D) chloride deposits within the paste (SEM-BSE).
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Figure 2.12 SEM-EDX micrographs of microstructure of specimen removed from the corner of a beam from MS5 (plain-
dolomite) mixture exposed to CaCl, after 151 FT cycles; (A) and (B) chloride deposits within C-S-H, (C) Friedel’s salt, (D) deposit
of CaCl, within C-S-H (SEM-BSE).

Calcium
hydroxide
(Ca(OH),)

Brucite
(Mg(OH),)

VFS = Vertical Full Scale

Figure 2.13 SEM-EDX micrographs of brucite, M-S-H, calcium hydroxide and remnants of un-hydrated cement (C3A) found in
M7 (slag cement-dolomite) specimen exposed to MgCl, after 310 FT cycles (SEM-BSE).
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MgCl, within C-5-H

mmmamm Calcium Carbonate
VIFS = Vertical Full Scale

Figure 2.14 SEM-EDX micrographs of M-S-H, CaCl,, CH, calcium carbonate, MgCl, and remnants of un-hydrated slag cement
found in M3 (slag cement-ACBFS) specimen exposed to MgCl, after 226 WD cycles (SEM-BSE).

Mg-0-Cl

CH

Figure 2.15 Void filled with (A) calcium oxychloride-like phase in sample exposed to CaCl, solution and (B) 1000X
magnification image of Mg-O-Cl phase surrounded by calcium hydroxide (CH) in M1 (plain-ACBFS) specimen exposed to

MgCl, after 347 FT cycles (SEM-BSE).

ion concentrations increase with age. This is not desir-
able as it increased the pH of the pore solution, mak-
ing the condition more favorable with respect to the
dissolution of calcium sulfide found in the ACBFS
aggregate. The opposite trend was found in the mix-
tures containing slag cement (Mix 3 and Mix 4). For
these mixtures, the sodium and potassium ion con-
centrations decreased with time. Analysis of the total
alkali content (i.e., combined sodium and potassium
ions concentration) shown in Figure 2.21 indicates that
mixtures containing slag cement (M3 and M4) not

only showed a decreasing trend in total alkali content
with age, but also have less than 70% of the total
alkali content of mixtures M1 and M2. This finding
suggests that using binder system utilized in mixtures
M3 and M4 would be beneficial with respect to mini-
mizing the dissolution of calcium sulfide from ACBFS
aggregates.

The variation of sulfate ion (SO4>") concentration in
the pore solution with age for the four types of paste
mixtures is presented in Figure 2.22. It can be seen that
replacing part of the portland cement with either fly

18 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



Calcium sulfide o
(Ca5) in ACBFS particle "o —__

VFS = Vertical Ful
i Scale

Combined spectra
" of CaS and melilite

Combined spectra of Cas
and melilite

Friedel’s salt
deposits mp v

VFS = Vertical Full Scale

E
s

Figure 2.17 SEM images showing deposits of calcium sulfide in the particles of ACBFS aggregate and Friedel’s salt in the matrix
of M3 (slag cement-ACBFS) specimen exposed to NaCl after 310 FT cycles (SEM-BSE).

-

Mellilite
Cas deposits within
ACBFS particles

Empty voids in ACBFS particles due to
the dissolution of Cas phase

Cracks in the cement matrix
and the ACBFS particle

FS = Vertical Full Scale

Figure 2.18 CaS deposits and empty voids in ACBFS particle from M4 (ternary-ACBFS) specimen exposed to distilled water
(DST) after 310 FT cycles (SEM-BSE).
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VFS = Vertical Full Scale

Ettringite

(A) VFS = Vertical Full Scale

(B)

Figure 2.19 SEM-EDX (Energy Dispersive X-Ray) micrographs of ettringite in (A) concrete containing ACBFS and slag cement
(M3-DST-FT) and (B) concrete containing natural dolomite as coarse aggregates (SEM-BSE).

ash, slag, or combination of these two materials results used in this study and thus replacing part of the cement
in the reduction of sulfate ion content in the pore with other materials results in the dissolution effect.

solution. This finding is supported by the fact that OPC The plots for calcium, aluminum, and chloride ion
has the highest amount of sulfur oxide (see Table E.1) concentration detected in the pore solution are included

compared to class C fly ash and slag cement (see Table E.1) in the Figure E.1, Appendix E.

20

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



@3-da B7-da E28-da
250 y y Y
5 200
F
g 150
%‘ 100
o
2
= 50
0
Mix 1 (Plain) Mix 2 Mix 3 Mix 4 (Ternary)
(FA+OPC) (SC+OPC)
Mixture type
(A) Sodium (Na*) ion concentration
H3-da B7-da B28-da
700 y y ¥
600
é 500
£ 400
£300
o
< 200
=
100
0
Mix 1 (Plain) Mix 2 Mix 3 Mix 4 (Ternary)
(FA+OPC) (SC+OPC)
Mixture type

(B) Potassium (K*) ion concentration

Figure 2.20 (a) Variation in sodium ion concentration; (b)
Variation in potassium ion concentration.
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Figure 2.21 Variation in total alkalis concentration with age
in different paste mixtures.
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Figure 2.22 Variation in sulfate ion concentration at with age
for different paste mixtures.

3. COST BENEFIT ANALYSIS OF USING SLAG
AGGREGATE IN NEW CONCRETE PAVEMENTS

3.1 Background

With the shrinking availability of good quality natu-
ral aggregates, use of reclaimed aggregates such as
air-cooled blast furnace slag (ACBFS) aggregate is
becoming increasingly popular in industrial states where
such materials may be abundantly available. This pro-
ject has demonstrated that concrete mixtures incorpor-
ating ACBFS aggregate can be successfully used for
paving applications in the state of Indiana. Today, the
cost of slag aggregate is similar to that of naturally mined
dolomite aggregate (INDOT #38 size). However, this can
be expected to change in the near future as the deposits
of good quality natural aggregate in the existing quarries
are diminishing. A major cost benefit associated with
using ACBFS aggregate instead of naturally mined
coarse aggregate in concrete arises from the savings
associated with disposing slag (waste product of iron
and steel industries) in landfills.

The feasibility of using slag aggregate in base layers
of a concrete pavement was not studied in this project;
however, the cost benefit analysis presented here has an
option to calculate cost benefits associated with using
ACBEFS aggregate in base layers of a concrete pave-
ment. Furthermore, this analysis does not include the
costs associated with the environmental damage caused
due to mining and land filling operations. Similar
approach in analyzing the benefit cost on pavement
concrete with recycled aggregate was done in SPR 3309
project study sponsored by INDOT (Verian, Whiting,
Olek, Jain, & Snyder, 2013).

3.2 Cost Benefit Analysis Model

The costs benefit model is presented as a supplemen-
tal Excel worksheet (available for download at https://
doi.org/10.5703/1288284316362) to provide flexibility
to the user with respect to updating the parameters
of pavement structure and/or cost of raw materials.
This model considers the use of ACBFS aggregates and
supplementary cementitious materials such as fly ash
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and ground granulated blast furnace slag (GGBFS) in
concrete.

3.2.1 Input Parameters

The input parameters used for this cost benefit
analysis are expected to change either with each project,
location or over time. Input parameters such as amount
of aggregate needed will vary from project to project.
Although certain parameters, such as landfill costs or
new aggregate costs, are common for different project
in Indiana, they can be expected to change over time.
Figure F.1 of Appendix F shows an example of how the
model estimates the quantity of raw material needed to
build a new concrete pavement.

The cells marked in yellow are project specific var-
iables and their values will change depending on
the requirements of the project. The cells highlighted
in blue are the values calculated by the model. The
values used in this example are those for a typical
concrete pavement structure. In calculating the quan-
tity of raw materials required in the base layers, the
weights of one cubic yard of aggregates were assumed as
follows:

1. #8 natural aggregate is 1.5t/cy
2.  #53 natural aggregate is 1.4 t/cy
3. ACBFS aggregate is 1.33 t/cy

The next part of the model deals with the calcula-
tions of the costs associated with the use of all 8 con-
crete mixtures tried during the course of this study
(see Table 3.1). The model also provides for partial or
complete replacement of natural aggregate by ACBFS
aggregate in base layers of the pavement structure
(see Table 3.2 for the example of the case of complete
replacement). All the input variables used for this part
of the model are highlighted in yellow in Figure F.2,
Appendix F. The values used in this table are the ave-
rage values of the range of cost of each particular
material. For example, the cost of #8 dolomite aggregate
varies between $8.5-10.5/ton and therefore the average
value of $9.5/ton is used for calculations. The major
portion of the cost of fly ash and GGBFS generally arise
from their availability and transportation from the source
and therefore huge variations are expected for those
values depending on the proximity of the concrete pro-
duction plant and the source. Landfill costs and hauling
costs are more or less similar but are expected to change
over time. Hauling distances used for calculation of the
cost of raw materials required for constructing a concrete
pavement are shown in Figure F.2 of Appendix F. The
values for hauling distances were arrived at using engi-
neering judgment. For example, the hauling distance
between slag production plant and disposal site is gene-
rally expected to be a small number. Most assumptions
made and values used for this example are also listed in
the Figure F.2 of Appendix F. The cost of #53 and #8
ACBFS aggregates are assumed to be the same for this
cost benefit analysis model.

3.2.2 Output Values

Table 3.1 and Table 3.2 show the final costs of build-
ing concrete pavement for all the eight mixtures tested
during the course of this study without ACBFS aggre-
gate in base layers and with 100% of base material con-
sisting of ACBFS aggregate respectively. The purpose
of this cost benefit analysis is to demonstrate the
economic benefits associated with replacing naturally
mined course aggregate (dolomite) with ACBFS aggre-
gates. Therefore, the costs associated with hauling sand,
cement, fly ash and GGBFS from source to concrete
production plant and concrete from production plant
to job site are not included in this analysis.

Concrete incorporating slag aggregates (Mixes 1-4)
cost slightly less than concrete with dolomite as coarse
aggregate. However, hauling cost of aggregates contri-
butes 32%-37% (for the input values used in this
example) of the cost of concrete and therefore the
hauling distances used for calculation will significantly
alter the output. The total cost of raw materials requi-
red for constructing pavement with 100% ACBFS
aggregate in base layers of the pavement structure is
approximately 4% lower than the costs associated with
pavement incorporating 0% ACBFS aggregate in the
base layers. However, since the hauling distance has
huge implications on the total cost, a project site or
concrete production plant located close to the ACBFS
aggregate source would benefit significantly from using
ACBEFS in concrete as well as in the base layers.

Table 3.3 and Table 3.4 present the costs of concrete
and a total cost of the raw materials required for the
project when the hauling distances are same for both
ACBFS aggregates and naturally mined dolomite aggre-
gate. The difference in the cost of concrete produced
using ACBFS aggregate and naturally mined dolo-
mite aggregate is more pronounced when the haul
distance is similar. In addition, the total cost of the
project also reduces significantly when ACBFS aggregate
is used in base layers (100%) when the haul distance is
similar.

However, in real life, ACBFS aggregate source are
located mostly in industrial areas and are therefore
farther away from most construction projects than
sources of naturally mined aggregates. Therefore, the
initial cost of constructing concrete pavements with
ACBFS aggregate as coarse aggregate can be higher
than using naturally mined dolomite aggregate. How-
ever, inclusion of the costs associated with environmental
pollution due to mining operations in the model could
potentially lead to a different picture.

4. CONCLUSIONS

The conclusions drawn from the study are as follows:

® This study demonstrated that air-cooled blast furnace
slag (ACBFS) can be safely used as coarse aggregate in
pavement concrete, as replacement for natural coarse
aggregate. Potential benefits on using ACBFS aggregate
in pavement concrete include improved quality of the
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TABLE 3.1
Table summarizing the costs (per lane-mile) for constructing new pavement with 0% ACBEFS in base layers.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8
Cost of concrete $95,705 $92,640 $90,249 $89,379 $101,053 $97,612 $97,690 $94,928
Cost of base (#8) $28,380 $28,380 $28,380 $28,380 $28,380 $28,380 $28,380 $28,380
Cost of base (#53) $52,155 $52,155 $52,155 $52,155 $52,155 $52,155 $52,155 $52,155
Total cost $176,240 $173,174 $170,784 $169,913 $181,588 $178,146 $178,224 $175,462

TABLE 3.2
Table summarizing the costs (per lane-mile) for constructing new pavement with 100% ACBFS in base layers.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8
Cost of concrete $95,705 $92,640 $90,249 $89,379 $101,053 $97.612 $97,690 $94,928
Cost of base (#8) $24,383 $24,383 $24,383 $24,383 $24,383 $24,383 $24,383 $24,383
Cost of base (#53) $48,767 $48,767 $48,767 $48,767 $48,767 $48,767 $48,767 $48,767
Total cost $168,855 $165,790 $163,399 $162,529 $174,203 $170,762 $170,840 $168,078

TABLE 3.3

Example of calculation of total cost (per lane-mile) of the project with similar haul distance (60 miles) for ACBFS aggregate and naturally
mined dolomite aggregate (0% ACBES in base).

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8
Cost of concrete $90,161 $87,096 $85,081 $83,903 $101,053 $97,612 $97,690 $94,928
Cost of base (#38) $28,380 $28,380 $28,380 $28,380 $28,380 $28,380 $28,380 $28,380
Cost of base (#53) $52,155 $52,155 $52,155 $52,155 $52,155 $52,155 $52,155 $52,155
Total cost $170,696 $167,630 $165,616 $164,438 $181,588 $178,146 $178,224 $175,462

TABLE 3.4
Example of calculation of total cost (per lane-mile) of the project with similar haul distance (60 miles) for ACBFS aggregate and naturally
mined dolomite aggregate (100% ACBEFS in base).

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8
Cost of concrete $90,161 $87,096 $85,081 $83,903 $101,053 $97,612 $97,690 $94,928
Cost of base (#38) $21,652 $21,652 $21,652 $21,652 $21,652 $21,652 $21,652 $21,652
Cost of base (#53) $43,305 $43,305 $43,305 $43,305 $43,305 $43,305 $43,305 $43,305
Total cost $155,118 $152,053 $150,039 $148,860 $166,011 $162,569 $162,647 $159,885
paste (due to possibility of internal curing) and reduced densification of the matrix by formation of additional
risk of alkali-silica reaction (ASR) due to the absence of C-S-H (also due to pozzolanic reaction). Both of these
an active form of silica. The specific gravity of ACBFS is processes reduced the vulnerability of the matrix to
also lower than that of a typical natural aggregate, thus chemical attack by chloride-based deicers. In addition, the
resulting in larger volume of concrete for the same weight. use of slag cement reduces the total alkali content of the
However, one should keep in mind that ACBFS has lower pore solution (especially at later ages), which is beneficial
resistance to the abrasion compared to dolomite and that with respect to minimizing the potential for dissolution of
it contains calcium sulfide, which under certain conditions, calcium sulfide from ACBFS aggregate.
can dissolve and release sulfide which, upon oxidizing in ® In terms of their role in concrete deterioration, calcium
the pore solution, will convert to sulfate, thus increas- chloride was found to be the most aggressive deicer,
ing the potential for sulfate attack. Moreover, in some followed by magnesium chloride and then by sodium
cases the leaching of sulfide from ACBFS particles was chloride.
found to create intraparticle porosity, which may weaken ® The mechanisms of deterioration of concrete exposed
the aggregate. to CaCl, and NaCl deicers were found to be similar,
® Under the exposure conditions used in this study (i.e., specifically, in both cases the deicers reacted with calcium
FT and WD cycles in the presence of the deicers), the hydroxide which leads to deterioration of concrete
durability of pavement concrete was highly improved matrix. This in turn, enables liquids to penetrate fur-
in cases when part of the portland cement was replaced ther into concrete matrix. However, the deterioration rate
by either fly ash, slag cement or combination of these of CaCl, was found to be much faster than that of NaCl.
materials. The observed improvement is attributed to The faster deterioration rate observed in the presence
reduction of the amount of calcium hydroxide present of CaCl, can be attributed to the formation of calcium
in the hydrated matrix (due to pozzolanic reaction) and oxychloride.
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®* Two most common concrete deterioration mechanisms
triggered by the exposure of MgCl, involved its reaction
with calcium hydroxide and C-S-H to produce CaCl, and
M-S-H, respectively. Unlike C-S-H, M-S-H does not
have binding capacity and thus reduces the strength of
concrete.

e Statistical analysis has proven to be an effective tool in
assessing the significance of several different variables
(i.e., type of binder system, type of aggregate, type of deicer
and exposure conditions) with respect to affecting concrete
properties. Moreover, Tukey’s multiple comparison method
was found to be suitable for differentiating the impact of
different levels within a specific factor.

® The benefit cost analysis has proven that air-cooled blast
furnace slag (ABCFS) is economically feasible to be used
as coarse aggregate in pavement concrete.
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APPENDIX A. MECHANISMS OF DEICERS
DETERIORATION ON PAVEMENT CONCRETE

A.1 Physical Deterioration

During freezing and thawing cycles, concrete experi-
ences expansion and internal stress which lead to
scaling and internal micro-cracking (Chatterji, 1978;
Collepardi, Coppola, & Pistolesi, 1994; Harnik, Meier,
& Rosli, 1980; Hudec, Maclnnis, & McCann, 1994;
Janusz, 2010; Marchand, Sellevold, & Pigeon, 1980;
Sutter, 2005). Several different physical mechanisms of
deterioration have been introduce to explain the devel-
opment of the pressure within the pore system during
freezing and thawing cycles but it is still not clear which
one is dominantly found from all experiment from the
literature (Janusz, 2010).

Hydraulic Pressure Theory

This theory was proposed by Powers in 1949
(as described by Marchand et al., 1994). According
to this theory, when the temperature of saturated cement
paste drops below 0°C, ice crystals begin to form in
larger capillaries. The formation of ice crystals results in
about 9% of volume increase and forces the unfrozen
pore water to escape from the larger capillaries into
the surrounding paste. This generates an internal
stress which, if not accommodated by sufficient air
voids system, can lead to the freeze/thaw damage
of concrete matrix (Harnik et al., 1980; Sumsion &
Guthrie, 2013).

Osmotic Pressure Theory

Based on this theory, only pure water freezes in
the larger capillaries, with a more concentrated
solution remaining in the smaller pores. In order to
maintain a thermodynamic equilibrium, unfrozen
water from the smaller pores migrates to the larger
pores causing growth of ice crystals and increasing
pressure in the pore structure (Harnik et al., 1980;
Sumsion & Guthrie, 2013).

Thermal Shock

Proposed by Harnik et al. (1980), this theory stated
that heat required for melting of ice and snow is extrac-
ted mostly from the concrete when thawing takes place.
Because of the great loss of heat, the temperature of the
surface (usually only a few millimeters below the sur-
face) rapidly decreases causing thermal shock (OECD,
1997; PennDOT, 2000).

Layer by Layer Deterioration

According to this theory, stress is created because of
a different concentration of salt solutions between
layers. The concentration of deicers in the layer under-
neath the surface is much higher than that near the

surface and achieves its maximum depth around 10 mm.
In this layer, freezing practically does not occur.
A different situation exists in the outer layer, which
contains a low concentration of deicing salts. This is
due to washing out of the salts caused by precipi-
tation such as rain. In fact, as the temperature of
the concrete pavement surface drops below 0°C, ice
crystals can form in the outer layer. Variable defor-
mations of the different layers cause stress, which
leads to the concrete cracking (Hobbs, 2001; Marchand
et al., 1994).

Growth of the Salt Crystals

The growth of salt crystals occurs when the solu-
tion in the larger pore reaches a supersaturated state
(Hobbs, 2001). It is commonly known that application
of salts increases the degree of concrete saturation
(Farnam, Washington, & Weiss, 2015; Farnam, Weise,
Bentz, Davis, & Weiss, 2015). The formation of salt
crystals starts in the largest pores when the solution
reaches super saturation. Then, salt molecules are drawn
out of the smaller pores into the larger pores leading to
the growth of crystallization pressure. This mechanism
is most prominent in case of surface scaling failure
(Marchand et al., 1994).

Supercooling

Harnik et al. (1980) asserted that super cooling is the
result of freeze/thaw cycles and the presence of sodium
chloride, which reduces the freezing point of water
in the concrete pores. Thus, at a temperature near 0°C,
water does not freeze, resulting in a decrease in the
hydraulic pressure. However, when water finally starts
freezing (i.e., with no chlorides present), the rate of
freezing is much higher than with normal freezing,
inducing a greater magnitude of hydraulic pressure and
destructive effect. In addition, a higher osmotic pres-
sure occurs during and after freezing when sodium
chloride is present in the pore solution (Harnik et al.,
1980; Sutter, 2005).

A.2 Chemical Deterioration

The salt that ingresses into concrete matrix may react
with various products of cement hydration resulting in
either the deterioration of the matrix or loss of cor-
rosion protection of steel reinforcement. The role of
three different deicers: calcium chloride (CaCl,), mag-
nesium chloride (MgCl,) and sodium chloride (NaCl)
on chemical changes observed in hydrated cement
matrix are described below.

Effects of Sodium Chloride (NaCl) on Concrete
Properties

It is commonly known that long-term application
of NaCl leads to the removal of calcium hydroxide
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(Ca(OH),) according to the Equation A.1 (Janusz,
2010) below.

2NaCl+ Ca(OH),—»CaClL,+2NaOH  (A.l)

The removal of Ca(OH), increases the porosity near
the exposed surface. Moreover, the product of this
reaction, calcium chloride, can interact with the alumi-
nate phases (C3A) present in the cement paste and form
chloroaluminate crystals (Equation A.2; Chatterji,
1978; Collepardi et al., 1994).

CaCl, + C;A—C3A « CaCl, « I0H, O (A.2)

Formation chloroaluminate crystals can affect the
long-term frost durability on concrete surfaces in ser-
vice (Marchand et al., 1994).

Effects of Calcium Chloride (CaCl;) on Concrete
Properties

Concrete deterioration due to CaCl, exposure was
reported to be related with formation of 3Ca0O.CaCls,.
12H,0, which is an unstable complex salt (Farnam,
Washington, et al., 2015; Farnam, Weise, et al., 2015).
Another form of the complex salt which is known for
its destructive effect is known as calcium oxychloride
(Collepardi et al., 1994) which formation is presented in
Equation A.3. It is reported that calcium oxychloride
forms at room temperature when for CaCl, concentra-
tion above 12% by mass in the solution (Farnam,
Washington, et al., 2015). Other studies have reported
that calcium oxychloride can form at temperature above
water’s freezing point and it’s unstable at room tem-
perature and low level of relative humidity (Farnam,
Weise, et al., 2015; Shi, 2001).

3Ca(OH), + CaCl, + 12H,O0—3CaO

«CaCl, * 15H,0 (A3)

Since calcium hydroxide comprises 20%-25% of
the volume of the hydration product in concrete mat-
rix (Sumsion & Guthrie, 2013), the consumption of

calcium hydroxide promotes a more porous concrete
microstructure (Lee, Cody, Cody, & Spry, 2000). As the
presence of calcium hydroxide is a prerequisite to oxy-
chloride formation, the use of fly ash and slag cement as
partial cement replacement helps to mitigate the for-
mation of oxychloride as those cementitious materials
convert Ca(OH), into additional C-S-H.

Effects of Magnesium Chloride ( MgCl;) on Concrete
Properties

Magnesium chloride was also found to contribute to
concrete deteriorations. The most dominant deteriora-
tion effect associated with the exposure of concrete to
MgCl, is the formation of calcium chloride (CaCl,) and
magnesium silicate hydrate (M-S-H) by reaction with
calcium hydroxide and calcium silicate hydrate (C-S-H)
(Farnam, Washington, et al., 2015; Janusz, 2010; Lee
et al., 2000; Peterson, Julio-Betancourt, Sutter, Hooton, &
Johnston, 2008; Peterson, Julio-Betancourt, Sutter,
Hooton, & Johnston, 2013; Verian et al., 2015). The
formation of aforementioned components through che-
mical reaction of MgCl, with the hydration products is
shown in Equation A.4 and Equation A.5, respectively.

Ca(OH), +MgCl, »CaCl, + Mg(OH), (A.4)

C-S—H+MgCh—-CaCL+M—-S—H (A.5)

The formation of brucite (Mg(OH),) usually takes
place near the surface of concrete specimen which expo-
sed to MgCl, deicer (Farnam, Washington, et al., 2015;
Peterson et al. 2008; 2013). Brucite has been reported to
slow down concrete deterioration by hindering ingress
of chloride solution into the concrete due to its dense
and homogeneous nature (Farnam, Washington, et al.,
2015; Peterson et al. 2008; 2013). The formation of non-
cementitious M-S-H through the dissolution of C-S-H
produced significant concrete crumbling due to the loss
of binding capacity of the matrix. The formation of
CaC(l, (as shown in Equation A.4) will ultimately lead
to its reaction with Ca(OH), and thus formation of
oxychloride (as shown in Equation A.5).
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APPENDIX B. MILL CERTIFICATES

BUZZI UNICEM USA

PO Box 482-Greencastle, IN 46135-(765) 653-9766

This is to certify that Type | meets ASTM C-150 Specifications for Portland Cement and CSA A3000

Chemical Data
ASTM C114
Silicon Dioxide (SiO;) 18.94
Aluminum Oxide (Al,O,) 5.65
Ferric Oxide (Fe,Os) 329
Calcium Oxide (Ca0) 63.20
Magnesium Oxide (MgQ) 313
Sulfur Trioxide (SO,) 343
Loss on Ignition 113
Sodium Oxide 0.34
Potassium Oxide 078
Insoluble Residue 0.35
Total Alkali as Na,O 0.86
POTENTIAL COMPQUND COMPOSITI
Tricalcium Silicate (C,8) 81
Dicalcium Silicate (C,S) 8
Tricalcium Aluminate (C1A) 9
Tricalcium Aluminoferrite(C AF) 10

Silo Bill of Lading Tons Date

STATE OF INDIANA}

COUNTY OF PUTNAM)
Belore me the undersigned, a Nolary Public for Putnam County,
State of Indiana p iy app d John J. Wachal and ach
the

ation of the thus 16th day of November 2010.

Physical Data
ASTM C185
Air Entrained (%)
ASTM C204
Fineness (cm'/gm)
ASTM C151
Autoclave Expansion (%)
Compressive Strength, PSI

ASTM C109 Mortar Cubes
1-Day
3-Day
7-Day

28-Day
ASTM C101
Setting Time:
Vical
Initial, Min.
Final, Min.

Silo Billof Lading  Tons

To

9.8

3750

0.082

2790

112

225

Date

11/18/2010

%4;_/, L uetbt’

Philip A Clodfaiter, Notary Public
My commission expires May 8, 2015

Figure B.1 Cement mill certificate used in this study.

John J. Wachal
Quality Manager

28 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



Analytical Testing Service Laboratories, Inc.

P.O. Box 1118, Joplin, Missouri 64802

(417) 782-6573

Headwalers Resources, Inc
P.O. Box 3734

Alpharetta, GA 30023
1-770-475-8095

Attn: Carolyn Grant

Re: 9747- Schahfer 15 Fly Ash Sample 2000 Ton Composite - 12/1-31/09

ASTM C-618
Class "C"
Bequirements
Fineness (+325 Mesh) 34% Max
Moisture Content 3% Max
Specific Gravity el
Specific Gravity Variation 5% Max
Loss on Ignition 6% Max
Soundness 0.8% Max
SA.l, 7 Days 75% Min
SA.l, 28 Days 75% Min
Water Req. % Control 105% Max
Silica SiO, ek
Aluminum Oxide AlzO3 L
Ferric Oxide Fe;O3 st
Total 50% Min
Sulfur Trioxide SO4 5% Max
Calcium Oxide CaO EEE
Magnesium Oxide MgO L
Available Alkalies as Na,O e

Actual

11.00%
0.12%
2.62
0.73%
0.37%
0.01%

97.20%
101.80%
93.40%

36.90%
20.14%

7.01%
64.05%

1.58%
24.60%
5.47%

1.21%

February 02, 2010

We cerlify the above was tested in accordance with ASTM C-618 and AASHTO M295

Analytical Testing Service Laboratories, Inc.

e

John K. Cupp, Manager

Figure B.2 Class C fly ash certificate from the producer.
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MATERIAL SAFETY DATA SHEET

TRADE NAME: Blast Fumnace Slag SYNONYMS: Air Cooled, ACBF, BF Slag

| PRODUCT AND COMPONENT DATA

Component(s):

Blast Fumace Slag

CASRegistry % (Approx)  ACGIH TLV-TWA
65996-69-2 100 None Known

Composition of BF Slag
Normal Range

Si0;: 32-42%
ALOy 7-11%
Ca0: 35-45%
MgO: 7-15%

FeO: 0.1-0.7%
S 10-25%

Thmmmmm”mmmmmhﬂmhgml

Cay(MgFeAl) (SiA)0;

This formula represents the melilite mineral series.

Some of the constituents may also occur as separate compounds such as those listed below:

CaCoa,, CaS, Fe, Fe;0,, CaSO, . 2H;0

Il PHYSICAL DATA
SOLUBILITY: CaS, CaCO, FLASH POINT: None
STABILITY: Stable FLAMMABLE LIMITS: None

SPECIFIC GRAVITY: 2.3-2.4 Air Cooled

APPEARANCE & ODOR: Grayish, vesicular, stony material, may have slight sulfurous

Figure B.3 Slag aggregate mill certificate.
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odor when exposed to heat greater than 200 degrees F.
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APPENDIX C. TEST RESULTS

-8 INDOT #8, upper limit

4~ INDOT #8, lower limit

g

' - #8ACBFS
b4

§ ~+-#8 Dolomite
b

o

= INDOT #23, upper limit

—+— INDOT #23, lower limit

-~ #23 sand

Sieve size, mm

Figure C.1 Aggregate gradation curves.
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Figure C.2 Relative dynamic modulus of elasticity (RDME) of control specimens (C2) and specimens exposed to different deicers
under freezing-thawing (FT) cycles; (A) M1, (B) M2, (C) M3 and (D) M4.
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Figure C.3 Relative dynamic modulus of elasticity (RDME) of control specimens (C2) and specimens exposed to different deicers
under freezing-thawing (FT) cycles; (A) M5, (B) M6, (C) M7 and (D) M8.
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Figure C.4 Relative dynamic modulus of elasticity (RDME) of control specimens (C2) and specimens exposed to different deicers
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Figure C.5 Relative dynamic modulus of elasticity (RDME) of control specimens (C2) and specimens exposed to different deicers
under wetting-drying (WD) cycles; (A) M5, (B) M6, (C) M7 and (D) MS.
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MI-1PC -ACBFS (Plain — ACBFS) — Freezing & Thawing (FT)

M1-CaCL-FT MI-MgCl,-FT M1-NaCI-FT MI-DST-FT
dye= 17.4 mm dy= 8.5 mm dpye= 192 mm dye= 0 mm

(A)

MI-1PC -ACBFS (Plain — ACBFS) — Wetting & Drying (WD)

MI-CaCl,-WD MI-MeCl,-WD MI1-NaCl-WD MI-DST-WD
dy=23

3.3 mm d,,= 10.6 mm d,= 21.6 mm d.= 0 mm

(B)
Figure C.6 Chloride penetration depths associated with different deicers in M1-1PC-ACBFS (plain-ACBFS) specimens after:
(A) 347 FT cycles and (B) 286 WD cycles.

M2-.8PC. "F-\ ACBFS {FI\ Ash - -\CBFS) Freezing & Thawing (FT)

M2-CaCl,-FT M2-MgCl,-FT M2-NaCl-FT M2-DST-FT
dy= 124 mm dyye= 4.9 mm dyye= 17.8 mm d,.= 0 mm

avg
(A)

M2-.8PC.2FA-ACBFS (Fly Ash — ACBFS) — Wetting & Drving (WD)

MN2-CaCl,-WD M2-MgCl,-WD M2-NaCl-WD M2-DST-WD
dye= 125 mm dy= 4.1 mm dyye= 19.4 mm dye= 0 mm
(B)

Figure C.7 Chloride penetration depths associated with different deicers in M2-.2FA.8PC-ACBFS (fly ash-ACBFS) specimens
after: (A) 347 FT cycles and (B) 286 WD cycles.

36 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



M3-.75PC.258C-ACBFS (Slag Cement — ACBFS) — Freezing & Thawing (FT)

M3-CaCl,-FT M3-MgClL-FT M3-NaCI-FT M3-DST-FT
dye= 119 mm dye= 7.2 mm .= 13.2 mm dye= 0 mm

avg
(A)

M3-.75PC.25SC-ACBFS (Slag Cement — ACBFS) — Wetting & Drying (WD)

M3-CaCl,-WD M3-MgClL,-WD NGE-NaCl-WD M3-DST-WD
dyye= 17.6 mm dyye= 11.3 mm dyye= 17.3mm dyye= 0 mm

(B)
Figure C.8 Chloride penetration depths associated with different deicers in M3-.25SC.75PC-ACBFS (slag cement-ACBFS)
specimens after: (A) 310 FT cycles and (B) 226 WD cycles.

M4-.6PC.17FA.235C-ACBFS (Ternary — ACBFS)
—Freezing & Thawing (FT)

M4-CaCl-FT M4-MeClL,-FT M4-NaCI-FT M4-DST-FT
dye= 11.3 mm dye= 8.0 mm dyy= 12.0 mm = 0 mm
(A)
N4-.6PC.17FA.23SC-ACBFS (Ternary — ACBFS)
o — Wetting & Drying (WD)
M4-CaCl,-WD M4-MgCl,-WD N4-NaCl-WD MN4-DST-WD
dy= 15.3 mm dyye= 9.8 mm dye= 17.1 mm dyye= 0 mm
(B)

Figure C.9 Chloride penetration depths associated with different deicers in M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS)
specimens after: (A) 310 FT cycles and (B) 226 WD cycles.
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MS5-1PC -NA (Plain — Dolomite) — Freezing & Thawing (FT)

M5-CaCl,-FT M5-MgCl,-FT M5-DST-FT
dyye= 19.8 mm dyye= 16.1 mm d,ye=20.0 mm dyye= 0 mm

(A)
N5-1PC -NA (Plain — Dolomite) — Wetting & Drying (WD)

M5-CaCl,-WD M5-MgCl,-WD M5-NaCl-WD M5-DST-WD
we— 17.7mm dyye= 10.5 mm dyye= 16.8 mm dyye= 0 mm
(B)

Figure C.10 Chloride penetration depths associated with different deicers in M1-1PC-NA (plain-dolomite) specimens after:
(A) 350 FT cycles and (B) 286 WD cycles.

M6-CaCL-FT M6-MgCl,-FT M6-NaCl-FT M6-DST-FT

dyye= 10.5 mm dyye= 5.0 mm dye= 16.7 mm dyye= 0 mm

(A)
M6-.8PC.2FA -NA (Flv Ash — Dolomite) — Wetting & Drying (WD)

M6-CaCl,-WD M6-MgCl,-WD M6-NaCl-WD Mo6-DST-WD

dm;: 15.2 mm ;!m= 13.7mm 5-'-m;= 21.6 mm dy,= 0 mm
(B)

Figure C.11 Chloride penetration depths associated with different deicers in M6-.2FA.8PC-NA (fly ash-dolomite) specimens
after: (A) 350 FT cycles and (B) 286 WD cycles.
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M7-.75PC.258C-NA(Slag Cement — Dolomite) — Freezing & Thawing (FT)

M7-CaCl,-FT M7-MgCl,-FT M7-NaCI-FT M7-DST-FT
dye= 10.1 mm dyye= 9.7 mm dyy= 14.8 mm dye= 0 mm
(A)
M7-.75PC.25SC-NA(Slag Cement — Dolomite) — Wetting & Dryving (WD)

M7-CaCl,-WD M7-MgCL,-WD M7-NaCl-WD M7-DST-WD
dy= 4.1 mm dyye= 10.0 mm dyy= 184 mm dyye= 0 mm

(B)
Figure C.12 Chloride penetration depths associated with different deicers in M7-.25SC.75PC-NA (slag cement-dolomite)
specimens after: (A) 310 FT cycles and (B) 226 WD cycles.

M8-.6PC.17FA.23SC-NA (Temary — Dolomite) —
Freezing & Thawing (FT)

MS-CaCl,-FT MS8-MgCl,-FT MS8-NaCI-FT MS-DST-FT
dye= 9.8 mm dyye= 7.9 mm dyye= 11.1 mm dyye= 0 mm
(A)

MB-.6PC.17FA.23SC-NA (Ternary — Dolomite) —

Wetting & Drving (WD)

MS-CaCl,-WD 1\[8-MgL 1,--WD MS-NaCl-WD MS-DST-WD
dyy= 174 mm dyye= 10.1 mm dye= 18.2mm dye= 0 mm
(B)

Figure C.13 Chloride penetration depths associated with different deicers in M8-.17FA.23SC.6PC-NA (ternary-dolomite)
specimens after: (A) 310 FT cycles and (B) 226 WD cycles.
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Figure C.14 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 35, 59 and 102 FT cycles.

Figure C.15 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to MgCl, after (from left to right) 35, 59, 102 and 347 FT cycles.

Figure C.16 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to NaCl after (from left to right) 35, 59, 102 and 347 FT cycles.

Figure C.17 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to distilled water (DST) after (from left to right) 35, 59, 102 and 347 FT cycles.

Figure C.18 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 35, 59, 102 and 347 FT cycles.
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Figure C.19 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to MgCl, after (from left to right) 35, 59, 102 and 347 FT cycles.

Figure C.20 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to NaCl after (from left to right) 35, 59, 102 and 347 FT cycles.

Figure C.21 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to distilled water (DST) after (from left to right) 35, 59, 102 and 347 FT cycles.

Figure C.22 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBES (slag cement-ACBFS)
concrete specimens exposed to CaCl, after (from left to right) 18, 191 and 310 FT cycles.
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Figure C.23 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS)
concrete specimens exposed to MgCl, after (from left to right) 18, 191 and 310 FT cycles.

Figure C.24 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBES (slag cement-ACBFS)
concrete specimens exposed to NaCl after (from left to right) 18, 191 and 310 FT cycles.

Figure C.25 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS)
concrete specimens exposed to distilled water (DST) after (from left to right) 18, 191 and 310 FT cycles.
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Figure C.26 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS)
concrete specimens exposed to CaCl, after (from left to right) 18, 191 and 310 FT cycles.

Figure C.27 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBES (ternary-ACBFS)
concrete specimens exposed to MgCl, after (from left to right) 18, 191 and 310 FT cycles.

Figure C.28 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS)
concrete specimens exposed to NaCl after (from left to right) 18, 191 and 310 FT cycles.
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Figure C.29 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBEFS (ternary-ACBFS)
concrete specimens exposed to distilled water (DST) after (from left to right) 18, 191 and 310 FT cycles.

Figure C.30 Physical changes in the appearance of the representative sample of M5-.1PC-NA (plain-dolomite) concrete
specimens exposed to CaCl, after (from left to right) 42, 65, 118 and 139 FT cycles.

Figure C.31 Physical changes in the appearance of the representative sample of MS5-.1PC-NA (plain-dolomite) concrete
specimens exposed to MgCl, after (from left to right) 42, 65, 139 and 350 FT cycles.

Figure C.32 Physical changes in the appearance of the representative sample of M5-.1PC-NA (plain-dolomite) concrete
specimens exposed to NaCl after (from left to right) 42, 65, 139 and 350 FT cycles.
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Figure C.33 Physical changes in the appearance of the representative sample of MS5-.1PC-NA (plain-dolomite) concrete
specimens exposed to distilled water (DST) after (from left to right) 42, 65, 139 and 350 FT cycles.

Figure C.34 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to CaCl, after (from left to right) 42, 65, 139 and 350 FT cycles.

Figure C.35 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to MgCl, after (from left to right) 42, 65, 139 and 350 FT cycles.

Figure C.36 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to NaCl after (from left to right) 42, 65, 139 and 350 FT cycles.

Figure C.37 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to distilled water (WD) after (from left to right) 42, 65, 139 and 350 FT cycles.
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Figure C.38 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to CaCl, after (from left to right) 3, 87 and 172 FT cycles.

Figure C.39 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to MgCl, after (from left to right) 3, 87 and 172 FT cycles.

Figure C.40 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to NaCl after (from left to right) 3, 87 and 172 FT cycles.
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Figure C.41 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement - dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 3 and 172 FT cycles.

Figure C.42 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to CaCl, after (from left to right) 3, 87 and 172 FT cycles.

Figure C.43 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to MgCl, after (from left to right) 3, 87 and 172 FT cycles.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17 47



Figure C.44 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to NaCl after (from left to right) 3, 87 and 172 FT cycles.

Figure C.45 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (Ternary - dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 3, 87and 172 FT cycles.

Figure C.46 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles.
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Figure C.47 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure C.48 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles.

Figure C.49 Physical changes in the appearance of the representative sample of M1-1PC-ACBFS (plain-ACBFS) concrete
specimens exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles.
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Figure C.50 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure C.51 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure C.52 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles.
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Figure C.53 Physical changes in the appearance of the representative sample of M2-.2FA.8PC-ACBFS (fly ash-ACBFS) concrete
specimens exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles.

Figure C.54 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS)
concrete specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles.

Figure C.55 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBEFS (slag cement-ACBFS)
concrete specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles.
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Figure C.56 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS)
concrete specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles.

Figure C.57 Physical changes in the appearance of the representative sample of M3-.25SC.75PC-ACBFS (slag cement-ACBFS)
concrete specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles.

Figure C.58 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBEFS (ternary-ACBFS)
concrete specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles.
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Figure C.59 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS)
concrete specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles.

Figure C.60 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS)
concrete specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles.

Figure C.61 Physical changes in the appearance of the representative sample of M4-.17FA.23SC.6PC-ACBEFS (ternary-ACBFS)
concrete specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles.
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Figure C.62 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens
exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure C.63 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens
exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure C.64 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens
exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles.
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Figure C.65 Physical changes in the appearance of the representative sample of M5-1PC-NA (plain-dolomite) concrete specimens
exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles.

Figure C.66 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to CaCl, after (from left to right) 176, 205 and 281 WD cycles.

Figure C.67 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to MgCl, after (from left to right) 176, 205 and 281 WD cycles.
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Figure C.68 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to NaCl after (from left to right) 176, 205 and 281 WD cycles.

Figure C.69 Physical changes in the appearance of the representative sample of M6-.2FA.8PC-NA (fly ash-dolomite) concrete
specimens exposed to distilled water (DST) after (from left to right) 176, 205 and 281 WD cycles.

Figure C.70 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite)
concrete specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles.
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Figure C.71 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite)
concrete specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles.

Figure C.72 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite)
concrete specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles.

Figure C.73 Physical changes in the appearance of the representative sample of M7-.25SC.75PC-NA (slag cement-dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles.
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Figure C.74 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to CaCl, after (from left to right) 0, 90 and 226 WD cycles.

Figure C.75 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to MgCl, after (from left to right) 0, 90 and 226 WD cycles.

Figure C.76 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to NaCl after (from left to right) 0, 90 and 226 WD cycles.
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Figure C.77 Physical changes in the appearance of the representative sample of M8-.17FA.23SC.6PC-NA (ternary-dolomite)
concrete specimens exposed to distilled water (DST) after (from left to right) 0, 90 and 226 WD cycles.
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APPENDIX D. SEM RESULTS
M1-1PC-ACBFS (plain- ACBFS) — MgCl, + FT

Figure D.1 shows formation of Mg-O-Cl, M-S-H as the result of magnesium ion substituting the calcium ion in
C-S-H. Ettringite was also found in M1 specimen exposed to MgCl, and FT cycles.

Figure D.1 SEM-EDX micrographs for M1 (plain-ACBFS) beam exposed to MgCl, after 347 FT cycles; (A) Mg-O-Cl, (B) M-S-H,
(C) and (D) ettringite (SEM-BSE).
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M1-1PC-ACBFS (plain- ACBFS) — NaCl + FT

The observation on M1 specimen exposed NaCl+FT cycles under SEM has revealed the remnant of the deicer
(NaCl), ettringite, Friedel’s salt and chloride ion inside the paste.

Figure D.2 SEM-EDX micrographs for M1 (plain-dolomite) beam exposed to MgCl, after 347 FT cycles; (A) NaCl deposit,
(B) Ettingite, (C) Ettringite and Friedel’s salt (D) Chloride in paste (SEM-BSE).
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M1-1PC-ACBFS (plain- ACBFS) — DST + FT

Ettringite was observed in M1 specimen exposed to distilled water undergoing FT cycles in addition to the
hydration products (Ca(OH), and C-S-H).

Figure D.3 SEM-EDX micrographs for M1 (plain-NaCl) specimen exposed to distilled water (DST) after 347 FT cycles; (A) and
(B) ettringite, (C) Portlandite/Ca(OH),, (D) C-S-H (SEM-BSE).
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M2-.2FA.8PC-ACBFS (fly ash-ACBFS) — CaCl, + FT

SEM results for M2 specimen exposed to CaCl, and 347 FT cycles are presented in Figure D.4.
Remnant of CaCl, was found inside the cracks of the concrete matrix. Deposits of Friedel’s salt and ettringite
deposits were found inside the pores. In addition, intrusion of CI" was found within the paste.

Figure D.4 SEM-EDX micrographs for M2 (fly ash-ACBFS) specimen exposed to CaCl, after 347 FT cycles; (A) CaCl,,
(B) Friedel’s salt and ettringite, (C) Ettringite (D) CI intrusion in the paste (SEM-BSE).
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M2-.2FA.8PC-ACBFS (fly ash-ACBFS) — MgCl, + FT

SEM results for M2 after 347 FT cycles in the presence of MgCl, are shown in Figure D.5.

Traces of Cl- and sulfate were found near the cracks in the matrix. Brucite layer was found on the surface of the
specimen exposed to MgCl, as the result of dissolution of Portlandite by Mg ion. The presence of ettringite and
Friedel’s inside the pores was observed. In addition, void surrounded by Mg-O-Cl was observed.

Figure D.5 SEM-EDX micrographs for M2 (fly ash-ACBFS) specimen exposed to MgCl, after 347 FT cycles; (A) Cl- and sulfate
in the matrix, (B) Brucite layer, (C) Ettringite and Friedel’s salt in void, (D) Mg-O-Cl (SEM-BSE).
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M2-.2FA.8PC-ACBFS (fly ash-ACBFS) — NaCl + FT

SEM results for M2 after 347 FT cycles in the presence of NaCl are shown in Figure D.6.

No extensive cracks were observed on the surface of the specimens. However, chloride ingress, Friedel’s salt and
NaCl deposits were found near the surface of the specimen, indicating the penetration of NaCl deicer into the
matrix. Moreover, the presence of ettringite inside the pores was observed.

Figure D.6 SEM-EDX micrographs for M2 (fly ash-ACBFS) specimen exposed to NaCl after 347 FT cycles; (A) Cl- ingress in
the matrix, (B) Friedel’s salt, (C) Ettringite and (D) NaCl deposit (SEM-BSE).
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M3-.25SC.75PC-ACBFS (slag cement-ACBFS) — CaCl, + FT

SEM results for M3 after 310 FT cycles in the presence of CaCl, are shown in Figure D.7.

Friedel’s salt

Deposit of CaCl,

Friedel’s salt
mixed with
ettringite

VFS = Vertical Full Scale

Figure D.7 SEM-EDX micrographs for M3 (slag cement-ACBFS) specimen exposed to CaCl, after 310 FT cycles have shown
deposits of Friedel’s salt, ettringite and CaCl, deicer in the matrix (SEM-BSE).
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M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) — MgCl, + FT

SEM results for M4 after 310 FT cycles in the presence of MgCl, are shown in Figure D.8.

Figure C.8 shows the presence of M-S-H as the results of Mg ion replacing Ca ion in C-S-H. Layer of carbonation
product (calcium carbonate) was found at the surface of the specimen exposed to deicer. Calcium sulfide (CaS)
appears as bright dots within the matrix of ACBFS.

Calcium sulfide (Ca5s)

VFS = Vertical Full Scale
Figure D.8 SEM-EDX micrographs for M4 (ternary-ACBFS) specimen exposed to MgCl, after 310 FT cycles (SEM-BSE).
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M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) — NaCl + FT
SEM results for M4 after 310 FT cycles in the presence of NaCl are shown in Figure D.9.

Figure D.9 SEM-EDX micrographs for M4 (ternary-ACBFS) specimen exposed to NaCl after 310 FT cycles; (A) and (B)
Friedel’s salt, (C) ettringite deposit in pore (D) Cl deposits within the matrix (SEM-BSE).

68 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



M4-.17FA.23SC.6PC-ACBFS (ternary-ACBFS) — DST + FT

SEM results for M4 after 310 FT cycles in the presence of distilled water (DST) are shown in Figure D.10.
SEM analysis on M4 specimen exposed to DST and FT cycles has indicated the presence of ettringite filling the
pore. Monosulfate and Friedel’s salt were also observed in the matrix.

Monosulfate

Ettringite

VFS = Vertical Full Scale

Figure D.10 SEM-EDX micrographs for M4 (ternary-ACBFS) specimen exposed to distilled water (DST) after 310 FT cycles
(SEM-BSE).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17 69



MS5-1PC-NA (plain-dolomite) — CaCl, + FT

SEM results for M5 after 151 FT cycles exposed to CaCl, are shown in Figure D.11.
It can be seen that the matrix of M5 specimen exposed to CaCl,+FT has experienced extensive cracks as the
specimen was failed after 151 FT cycles. Chloride deposits and Friedel’s salts were found within the matrix.

Figure D.11 SEM-EDX micrographs for M5 (plain-dolomite) specimen exposed to CaCl, after 151 FT cycles; (A) and (B)
Deposits of Cl within the matrix, (C) & (D) Friedel’s salt (SEM-BSE).
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MS5-1PC-NA (plain-dolomite) — MgCl, + FT

SEM results for M5 after 350 FT cycles and exposed to MgCl, are shown in Figure D.12.

V4,021 Apr 14, 20814
=i 188 um

Figure D.12 SEM-EDX micrographs for M5 (plain-dolomite) specimen exposed to MgCl, after 350 FT cycles; (A) and (B)
Chloride infused M-S-H, (C) & (D) Friedel’s salt (SEM-BSE).
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MS5-1PC-NA (plain-dolomite) — NaCl + FT

SEM results for M5 after 350 FT cycles and exposed to NaCl are shown in Figure D.13.

Figure D.13 SEM-EDX micrographs for M5 (plain-dolomite) specimen exposed to NaCl after 350 FT cycles; (A) and (B)
Chloride deposits within C-S-H, (C) & (D) Friedel’s salt (SEM-BSE).
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M6-.2FA.8PC-NA (fly ash-dolomite) — MgCl, + FT
SEM results for M6 after 350 FT cycles and exposed to MgCl, are shown in Figure D.14.

821 Hay 18. 2014 RJ 1
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Figure D.14 SEM-EDX micrographs for M6 (fly ash-dolomite) specimen exposed to MgCl, after 350 FT cycles; (A) and (B)
Chloride infused M-S-H, (C) Cl deposits within C-S-H and (D) Friedel’s salt (SEM-BSE).
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M7-.25SC.75PC-NA (slag cement-dolomite) — CaCl, + FT

SEM results for M7 after 310 FT cycles and exposed to CaCl, are shown in Figure D.15.
The traces of chloride ingress were found within the carbonation and hydration products in the concrete matrix.

Ettringite/ Friedel’s salt

/

Calcium carbonate mixed
with chlorides

VFS = Vertical Full Scale
Figure D.15 SEM-EDX micrographs for M7 (slag cement-dolomite) specimen exposed to CaCl, after 310 FT cycles (SEM-BSE).
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M7-.25SC.75PC-NA (slag cement-dolomite) — MgCl, + FT
SEM results for M7 after 310 FT cycles and exposed to MgCl, are shown in Figure D.16.

Figure D.16 SEM-EDX micrographs for M7 (slag cement-dolomite) specimen exposed to MgCl, after 350 FT cycles; (A) and (B)
M-S-H, (C) Friedel’s salt and (D) chloride deposits within C-S-H (SEM-BSE).
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MS8-.17FA.23SC.6PC-NA (ternary-dolomite) — CaCl, + FT
SEM results for M8 after 310 FT cycles and exposed to CaCl, are shown in Figure D.17.

Friedel’s Salt

Friedel’s salt within
C-S-H

VFS = Vertical Full Scale
Figure D.17 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to CaCl, after 310 FT cycles (SEM-BSE).

76 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2017/17



MBS8-.17FA.23SC.6PC-NA (ternary-dolomite) — MgCl, + FT

SEM results for M8 after 310 FT cycles and exposed to MgCl, are shown in Figure D.18.
Brucite (Mg(OH),) and M-S-H appeared to be darker than the normal concrete matrix due to the high content of
magnesium.

Figure D.18 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to MgCl, after 310 FT cycles; (A) and (B)
brucite, (C) M-S-H and (D) Friedel’s salt (SEM-BSE).
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MS8-.17FA.23SC.6PC-NA (ternary-dolomite) — NaCl + FT
SEM results for M8 after 310 FT cycles and exposed to NaCl are shown in Figure D.19.

Personal SEM Vv4.821 Apr 14, 2815
leax — 18@ um

Figure D.19. SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to NaCl after 310 FT cycles; (A) and (B)
chloride deposits within the matrix C-S-H, (C) & (D) Friedel’s salt (SEM-BSE).
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MBS8-.17FA.23SC.6PC-NA (ternary-dolomite) — DST+ FT
SEM results for M8 after 310 FT cycles and exposed to distilled water (DST) are shown in Figure D.20.

monosulfate

Unhydrated cement
Particle (C,A)

VFS = Vertical Full Scale

Figure D.20 SEM-EDX micrographs for M8 (ternary-dolomite) specimen exposed to distilled water (DST) after 310 FT cycles
(SEM-BSE).
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APPENDIX E. PORE SOLUTION ANALYSIS

TABLE E.1

Oxide composition of cement, class C fly ash and GGBFS used in the study.

Oxides OPC Class C fly ash GGBFS slag?
Silicon Dioxide (SiO,) 18.94 36.9 32-42
Aluminum Oxide (AL,O3) 5.65 20.14 7-11
Ferric Oxide (Fe,0O3) 3.29 7.01 0.1-0.7°
Calcium Oxide (CaO) 63.2 24.6 3545
Magnesium Oxide (MgO) 3.13 5.47 7-15
Sulfur Trioxide (SOs3) 3.43 1.58 1-2.5¢
Loss on Ignition (LOI) 1.13 Not available Not available
Sodium Oxide (Na,O) 0.34 Not available Not available
Potassium Oxide (K,0) 0.78 Not available Not available
Total Alkali as Na,O 0.86 1.21 Not available

#The oxide composition for slag was obtained from the manufacturer and is presented as a range of values, rather than a single value.

®The reported value represents FeO instead of Fe,Os.

°The reported value represents sulfides (S*) and sulfates (SO4>) instead of SOs.

Concentration of Ca2*

Concentration of AP+

o 3-day
7-day
28-day

Mix 1 Mix 2 Mix 3 Mix 4

0.0025 0.0040
0.0020 - 03-day 0.0035 -
g @7-day 5 0.0030 4
g 0.0015 - m28-day @ 0.0025 1
S 00020 -
= 000907  0.0015
=] ©
= 4.0005 | = 0.0010 -
0.0005
0.0000 A ' . 0 m@ 0.0000 -
Mix 1 Mix 2 Mix3  Mix4
Mixture type
(a)
Concentration of CI
0.014
0.012
2 0.010 |
o
E 0.008 -
£ 0.006 -
&
2 0.004 -
0.002 -
0.000 -l

Mix 1 Mix 2 Mix 3
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Figure E.1 Concentration variation of (a) calcium, (b) aluminum and (c) chloride ions.
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APPENDIX F. BENEFIT COST ANALYSIS

Driving Lanes PCC Shoulder | areq of Estimated quanti
New Width | Thickness | PCCP Length Width Cement | FA. | GGBFS | Dolomite (#8) | ACBFS Agg. | Sand (#23
Pavement No. | (ft) (in}) (mi.) i US tons;
Concrete 1 12 10 1 5 0
e et
Base (#53, 1 12 6 1 100% NA _[NA | NA
Mix n* | Cement | F.A | GGBFS | Dolomite (#8) | ACBFSAgg. | (¥ Total
(Ibsicy) 586 0 0 1720 0
*The estimated quantity required shown has been calculated for the mix design marked with an asterisk (*).

Figure F.1 Example of calculation of quantities of raw materials required.

Haul Distance between Hauing Cost | Landfil Cost |
Doloemite
ACBFSagy. | ACBFSagg production Dolomite ACEBFS Costof #8
Cost of #53 production production plant plant and production producton dolomite agg. Costof ACBFS | Cost of Cemant Costofl FA Cost of GGBFS|
dolomite plant and and concrate concrate plant and plant and (typicalty 5 (typicaily $ (typically $8.5— agg, (typically (typically (fypicalty (typically
| sgoregate |  landfl | balchingplant | batching plant | project site project site 0.3-0.4/t0n) 1=2ton) 10.540n) $9.5-10.580n) | $40-70Mon) | $15-40%on) | $25-45Mon) | Costof #23 Sand
|—{$fion) gl [mi.) fmi.) fml) {1.3] [Shonimie] {Shon) (Shon) {Shon) ($hon) {Shon) [Shon) {Shon)
9 10 70 50 65 75 0.35 15 95 10 55 5 35 8

Figure F.2 Input variables for calculation of cost of concrete pavement.
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About the Joint Transportation Research Program (JTRP)

On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State
Highway Commission to cooperate with and assist Purdue University in developing the best
methods of improving and maintaining the highways of the state and the respective counties
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP)

to reflect the state and national efforts to integrate the management and operation of various
transportation modes.

The first studies of JHRP were concerned with Test Road No. 1—evaluation of the weathering
characteristics of stabilized materials. After World War II, the JHRP program grew substantially
and was regularly producing technical reports. Over 1,600 technical reports are now available,
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue
University and what is now the Indiana Department of Transportation.

Free online access to all reports is provided through a unique collaboration between JTRP and
Purdue Libraries. These are available at: http://docs.lib.purdue.edu/jtrp

Further information about JTRP and its current research program is available at:
http://www.purdue.edu/jtrp

About This Report

An open access version of this publication is available online. This can be most easily located
using the Digital Object Identifier (doi) listed below. Pre-2011 publications that include color
illustrations are available online in color but are printed only in grayscale.

The recommended citation for this publication is:

Verian, K. P, Panchmatia, P, & Olek, ]. (2017). Investigation of use of slag aggregates and slag cements
in concrete pavements to reduce the maintenance cost (Joint Transportation Research Program
Publication No. FHWA/IN/JTRP-2017/17). West Lafayette, IN: Purdue University. https://doi.org
/10.5703/1288284316362
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